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Some upwind formulations promote severe instabilities that originate in the numer-
ical capturing of shocks; this is known as the “carbuncle” phenomenon. An analysis
of the linearized form of the algorithms is carried out to explain and predict the gener-
ation of such instabilities. The information obtained is then used to design remedies
that only slightly and locally modify the original schemes.c© 2001 Academic Press
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1. INTRODUCTION

Strong shock waves and density or shear layers characterize high-speed flows. These
features affect the choice of the most appropriate numerical methods to be used. In partic-
ular, the requirement of capturing numerically strong shock waves moves attention toward
upwind methods. Among these, theflux difference splitting(FDS) approach looks to be the

1 Financed by the European Commission with a TMR Marie Curie Research Training Grant.

271

0021-9991/01 $35.00
Copyright c© 2001 by Academic Press

All rights of reproduction in any form reserved.



272 PANDOLFI AND D’AMBROSIO

most promising, since it combines good shock-capturing properties with the capability of
correctly dealing with density or shear layers, introducing, in the latter case, only a small
amount of artificial diffusion into the solution (in the cases of steady density or shear layers
aligned with the grid, no artificial diffusion is injected). Unfortunately, several numerical
experiments based on FDS methods have given unacceptable results, even for the simplest
problems: the structure of numerically captured shock waves often becomes widely dis-
torted and the resulting picture would seem to justify the nickname ofcarbunclethat is
found in literature. A very clear introduction on this subject and some preliminary sugges-
tions on how to circumvent shortcomings are given in [17]; some numerical experiences on
the problem have previously been reported in the literature, though not in detail.

In this paper we would like to contribute to the understanding of such a disturbing
deficiency and to suggest remedies to resolve the problem.

First, we start with an analysis of some significant aspects of the carbuncle numeri-
cal phenomenon. Then, we review some of the most popular upwind methods to predict
compressible flows. Afterwards, we show the results of numerical experiments that were
obtained in two significant examples proposed in [17]. These clearly show the carbuncle
instability and may represent the basis for understanding where the problem arises and for
discussing possible remedies. At this point, we develop some simple analyses to learn how
the different methods behave in the presence of perturbations that may trigger the instability
process. Finally, we look at some suggestions that have been reported in the literature to
prevent such a disturbing numerical deficiency and we then propose a cure.

2. THE CARBUNCLE PHENOMENON

The numerical instability that, in some cases, afflicts the numerical capturing of shock
waves is defined as the “carbuncle phenomenon.” A typical result of this kind of disturbing
event is shown in Fig. 1 and concerns the numerical simulation of aM∞ = 20 inviscid
flow around a circular cylinder, a problem which is today considered a normal routine in

FIG. 1. Carbuncle in the supersonic inviscid flow around a blunt body atM∞ = 20 (density contours).
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computational fluid dynamics. The distorted shape of the shock is not due to a program-
ming bug: the code used, which adopts a flux-difference splitting method (which in the
following is indicated as FDSPAN), works correctly for other problems and did not show
any disturbances of this kind before the numerical grid was refined in the circumferential
direction beyond a certain extent.

The carbuncle phenomenon does not only belong to the numerical simulation of super-
sonic flows on blunt bodies; it can, for instance, also be found in other problems, such as
in the numerical capturing of quasi-conical shock waves around slender bodies [10] or in
the numerical simulation of interstellar flows in astrophysics [27]. Nevertheless, since our
experience of the problem commenced when we were dealing with blunt bodies, we decided
to start from this point to illustrate some plain facts that we noticed during our study.

From numerical experiments on computing the classical supersonic flow around a blunt
body, the following was observed:

a. The carbuncle phenomenon originates inside the narrow computational region where
a normal shock (in which the upstream relative flow is perpendicular to the shock front)
is numerically captured, but only when it is well aligned with one family of grid co-
ordinates; weak disturbancies, even at the round-off error level, in the initially regu-
lar structure of the captured shock may induce severe instabilities that badly degener-
ate into large oscillations, both in space and in time. If the numerical capturing of the
shock is replaced by its explicit treatment, theshock-fitting technique(SHOFIT), all gen-
erations of the carbuncle instability are prevented, since the shock-capturing region is
absent.

b. The grid aspect ratio is very significant in the establishment of the carbuncle phe-
nomenon: very elongated grid elements along the normal to the shock promote instabilities,
whereas meshes stretched along the tangent to the shock have a damping effect; this point is
clearly visible in Fig. 2, where the blunt-body test case has been computed using different
grids, which have the same number of points (20) in the radial direction, but a different
number of points (20, 80, 160, and 320) in the tangential direction.

c. The carbuncle phenomenon occurs in those upwind methods that solve the Riemann
problem (RP), defined at the interface between two adjacent cells, on the basis of a three-
wave model.

d. Carbuncle-ike features are more evident in the plain first-order integration scheme,
than in more accurate reconstruction schemes, which denote a less severe development of
instabilities; this statement is supported by the numerical results shown in Fig. 3, where
first-and second-order results obtained using the same grid are compared.

e. The carbuncle represents a numerical instability that is closely related to the convective
terms of the equations (the Euler part), which govern compressible flows; the effect of
the diffusive terms which are present in the Navier–Stokes equations is not sufficient to
improve the (poor) quality of the results. This is shown in Fig. 4, where the blunt-body
problem is computed solving the full Navier–Stokes equations, using the same upwind
method (FDSPAN) as in the previous examples. In this case, the grid is composed of 40
cells in the radial direction and is clustered close to the cylinder wall, but the cells’ aspect
ratio in the bow shock region has been maintained equal to that of the inviscid computation.
From these results, it is evident that one cannot rely on the natural viscosity to damp the
numerical instability, because even for unpractically low Reynolds numbers, the solution is
still affected by the carbuncle.
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FIG. 2. Supersonic inviscid flow around a blunt body atM∞ = 20 (density contours). Effect of the tangential
refinement. An enlarged view of the grid in the region where the carbuncle occurs is shown above each result.

From these facts, which can easily be reproduced in simple numerical experiments, we
have drawn some conclusions:

1. The instability is generated by solving the RP on those interfaces that are oriented
with the unit vector parallel to the normal shock (those whose dimension is indicated as1ξ

in Fig. 5); if the grid element is highly elongated in this direction, tangential to the shock, as

FIG. 3. Carbuncle in the supersonic inviscid flow around a blunt body atM∞ = 20 (density contours). First-
order (left) and second-order (right) results.
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FIG. 4. Supersonic viscous flow around a blunt body atM∞ = 20 (density contours). From left to right, the
Reynolds number is equal to 104, 5 · 104, 105, and 106.

in case a of Fig. 5, the time step that will be used to integrate the conservation equations for
that cell will be the one dictated by the Courant–Friedrichs–Lewy (CFL) condition related
to the other surface, the one whose dimension is indicated as1η. Therefore, the RP across
the interfaces1ξ will be solved using a time step that is smaller than the one which should
be necessary for them alone. In this way, some additional numerical diffusion is introduced
into the fluxes across those surfaces and this explains why the carbuncle is less intense with
this kind of grid aspect ratio. Conversely, if the situation is as depicted in case b of Fig. 5,
the time step that will be used will be the one which is related directly to the interface with
dimension1ξ , so that no additional artificial diffusion will be introduced.

2. The carbuncle phenomenon is connected to those solutions of the RP that explicitly
take into account the contact surface; this fact is usually shown by its occurrence in FDS
approaches; the explicit treatment of the contact surface seems to be the essential point of
the problem.

3. It is convenient to focus attention on the algorithms based on the first-order integration
scheme [17]; in this case, the initial discontinuity of the RP shows its largest amplitude and
the relevance of the upwind method to the carbuncle occurrence becomes more important,
despite the higher numerical dissipation related to the first-order scheme.

FIG. 5. Aspect ratio of the cells and carbuncle occurrence.
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On the basis of these conclusions, it would seem convenient to start with an examination
of the features and characteristics of upwind methods.

3. UPWIND METHODS

Upwind methods present the appealing feature of introducing the elements of the wave
propagation phenomenology in the integration of conservation laws (CL). In their construc-
tion, the partial differential form of the governing equations (PDE) plays a fundamental
role in estimating the flux over the surface that bounds the control volume considered by
the CL.

For the purpose of reviewing different upwind methods, we examine the 1D inviscid
problem and define the fluxFN+1/2 at the interface that separates two neighboring cells,N
andN + 1. The fluxFN+1/2 is estimated by solving an RP, that is, the evolution in time of
an initial flow discontinuity (constructed with the initial data atN andN + 1), in terms of
propagating waves.

We consider a first group of upwind methods, where the fluxFN+1/2 is evaluated through-
out the full and correct interaction between the initial data at the cellsN andN + 1. The
RP is solved according to the three-wave model described by the PDE (evolution of smooth
waves) and by the CL (jump conditions for propagating discontinuities). The initial data at
N andN + 1 contribute together to the development of twoacousticgenuinely nonlinear
waves (or shocks), related to the characteristic familiesλ1,3 = u∓ a, and of thecontact
surfacelinearly degenerated wave, associated to the characteristicλ2 = u. This procedure,
theRiemann approachas defined in [6], can be considered the direct heir of the work of
Godunov [5] and represents the basic feature of the FDS methods. It is worthwhile to point
out that the explicit treatment of the contact surface is the keynote of FDS methods.

The solution of the RP can be carried out exactly, through iterations based on the method
of characteristics (MOC), matched to the proper jump conditions in the presence of dis-
continuities. However, to save computing time, approximate solvers of the RP have been
proposed. Among these, mention should be made of the one suggested in [19] (FDSROE),
an exact solver of a linearized definition of the RP, the one suggested in [15], which is
an approximate solution of the actual RP, and the mirror image of the latter proposed in
[16](FDSPAN).

In a second group of upwind methods, the fluxFN+1/2 is evaluated by adding the indi-
vidual contributions of the cellsN andN + 1, where each contribution is estimated locally,
in N or N + 1, without the establishment of any mutual interaction between the two neigh-
boring cells. These are theflux-vector splitting(FVS) methods, inspired by theBoltzmann
approach, as suggested in [6]. The contact surface, which in some flow configurations may
represent a strong discontinuity, is not treated explicitly and its content can be spread over
two waves traveling in opposite directions. This leads to incorrect diffusion of the con-
tact surface and the algorithm results tend to be highly dissipative in strongly rotational
flows. Among the FVS methods, mention can be made of the original one proposed in [21]
(FVSSW) and the subsequent one suggested in [24] (FVSVL).

The splitting method proposed in [3, 6] and known in the literature as HLL, or HLLE,
is conceived as an FDS approach, but the contact surface is definitely ignored, as only the
acousticwaves are taken into consideration. As a result, only a weak interaction between
the cellsN andN + 1 exists in the determination ofFN+1/2 and the algorithm introduces
a strong dissipation related to the intermediate wave.
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In recent years, theadvection upstream splitting method(AUSM) has been proposed.
Here, the fluxFN+1/2 is considered as being composed of a “convective” part and a “pres-
sure” part. The first is evaluated on the basis of a strong interaction between theN and
N + 1 cells, whereas, for the second, no interaction occurs. There are different versions of
the AUSM method: one is based on a velocity splitting (AUSM-VEL) [11], a second one
refers to a Mach number splitting (AUSM-M) [12], and a third one has been proposed more
recently (AUSM+) [13].

With the exception of FDS methods, which explicitly account for the contact surface,
none of the others reproduces a full and correct interaction between the initial data atN and
N + 1. Many suggestions can therefore be found in the literature, for methods that present
these deficiencies, to restore the missing contact surface and thus the full interaction to
estimateFN+1/2. In thehybrid upwind scheme(HUS) [2], an FVS method is upgraded to
the FDS level, by introducing the explicit treatment of the second wave; for our present
analysis, we have reconstructed an HUS method by implementing elements from FDSPAN
in FVSVL. The HLL method has also been modified to recover the missing contact surface,
as indicated in [4] (HLLEM) or in [22] (HLLC). A restoration of the contact surface has
also been worked out for the AUSM family (AUSMV and AUSMD) [25, 26]. We hereafter
refer to these methods (HUS, HLLEM, HLLC, AUSMV, and AUSMD) as “mimes” of the
FDS.

In the present paper, we report the results of numerical experiments obtained with
FDSROE and FDSPAN for flux-difference splitting, with FVSSW and FVSVL for flux-
vector splitting, with HLL (or HLLE), and with AUSM-VEL, AUSM-M, and AUSM+
for advection upstream splitting; as far as FDS mimes are concerned, we consider a HUS
version (FDSPAN coupled to FVSVL), HLLC (where the wave velocities are determined
from FDSPAN), and finally AUSMV and AUSMD.

4. TWO SIGNIFICANT EXAMPLES

In this section, we will show the results of numerical experiments carried out using
different upwind methods on two significant examples.

The first example refers to the inviscid supersonic flow (M∞ = 20) around a circular
cylinder. The grid is shown in Fig. 6a and is composed of 20 radials and 320 tangential
intervals; one should note that only one out of five grid lines is drawn in the picture. The
mesh is very elongated in the radial direction to emphasize the effects of the carbuncle.
As far as the boundary conditions are concerned, uniform upstream values are imposed on
the outer radial boundary, impermeability is prescribed at the wall, and flow properties are
extrapolated at the boundaries where the outflowing gas is supersonic. All the computations
have been carried out with the plain first-order scheme and the same numerical treatment
at the wall.

The results are reported in Fig. 6, in terms of density contour lines. We can observe that
FDS methods (FDSROE in Fig. 6b and FDSPAN in Fig. 6c) exhibit a well-pronounced
carbuncle, which also appears in the FDS mimes. The instability in HLLC in Fig. 6e is
as intense as in FDS; AUSMD, in Fig. 6g, also shows a remarkable carbuncle. Somewhat
better—although still unacceptable—results are obtained with HUS (Fig. 6d) and AUSMV
(Fig. 6f). In contrast, FVS methods exhibit the complete absence of the instability (FVSVL
in Fig. 6h); even the HLL splitting method is totally carbuncle-free, as is shown in Fig. 6i.
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FIG. 6. Supersonic inviscid flow around a blunt body atM∞ = 20 (density contours).

Moderate, but nevertheless disturbing, anomalies are presented by the remaining AUSM
methods (AUSM-VEL in Fig. 6j, AUSM-M in Fig. 6k, and AUSM+ in Fig. 6l). One should
note that density contour lines appear to be more sensitive in showing anomalies, whereas
those related to the Mach number tend to attenuate the irregularity. Finally, theshock-
fitting technique(SHOFIT), in the unusual matching with an FDS method (here FDSPAN),
presents perfect results, as shown in Fig. 6m; as previously mentioned, this happens because
the explicit treatment of the bow shock does not require any shock-capturing region.

From the results reported in Fig. 6, we can conclude that those methods that explicitly
deal with the contact surface, by introducing a significant interaction between the initial
data atN and N + 1, display clear evidence of the carbuncle phenomenon; in contrast,
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FIG. 7. Moving shock atM∞ = 6 (density contours).

when such an interaction is barely taken into account, or even totally ignored, no carbuncle
instability occurs. The AUSM versions present some intermediate behavior.

A second significant example is now considered [17]. A shock propagates down a straight
duct, at the speed ofMsh= 6.0. The flow is inviscid. The grid has 800 cells along the duct
and 20 in the transverse direction. Each cell is a square with unit side, except those on the
centerline, which are distorted, as shown in Fig. 7a. The distortion, in fact, looks much more
amplified there, since the one actually imposed presents a perturbation in the vertical side of
1y = ±10−3, which would be undetectable at the correct scale. The example proposed in
[17] would suggest a much smaller perturbation (1y = ±10−6), but a larger value has here
been assumed to give more emphasis to the problem. Boundary conditions are prescribed
as follows. The propagating shock is strong enough for the flow entering the duct at the
inlet boundary to be supersonic: then, all the flow properties are prescribed here. In the
attempt to simulate an infinitely long duct, nonreflecting simple wave boundary conditions
are imposed at the outlet. The upper and lower boundaries are considered as solid walls
except for the case taken into account at the end of Section 5, where periodicity conditions
are imposed.

The shock begins its propagation from the left side of the duct, moving rightward with
a perfectly plane shape. Some disturbances are induced on the centerline and, depending
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on the method used, they can grow and deteriorate, or just remain confined. The numerical
results are reported as density contour lines in Fig. 7 and show the shock in the right
portion of the duct, and more specifically in the last 100 cells. We can observe the same
kind of results that have already been seen in the blunt-body example. The FDS methods
and their mimes show terrible shapes for the shock, once more justifying the carbuncle
denomination. (Figs. 7b–g). The methods related to FVS and the HLL splittings do not
present any deterioration (Figs. 7h, i). The AUSM methods also show slight instabilities
here; the latter can be seen only for AUSM-VEL (Fig. 7j), but not for AUSM-M (Fig. 7k)
or AUSM+ (Fig. 7l), but also become clearly visible in these cases, if the grid perturbation
is raised to higher levels.

The results obtained in this second example are in agreement with those reported for the
first one and confirm the previous conclusions on the performances to be expected from the
different upwind methods.

5. ANALYSES OF THE LINEARIZED ALGORITHMS

We consider, in a 2D domain (x, y), two squared cells with unit side (N,M) and
(N,M + 1), whose centers are located respectively atx(N,M), y(N,M) and atx(N,M+1) =
x(N,M), y(N,M+1) = y(N,M) + 1, and a gas flowing with the velocityq = u · i + v · j . Uni-
form conditions are assumed, with normalized valuesρ0 = 1, u0 6= 0, v0 = 0, andp0 = 1.
Density, shear velocity, and pressure perturbations ( ˆρ, û, p̂) are then prescribed and the
flow propertiesρ = 1± ρ̂, u = u0± û, v = 0, andp = 1± p̂ are defined, with the sign+
or − used respectively in the cell (N,M) or (N,M + 1) (Fig. 8). By considering the
linearized form of the algorithm for the different methods, we evaluate the fluxG =
(ρv, ρuv, p+ ρv2, v · (p+ e))T at the interface(N,M + 1/2). One should note that, in
this problem,v is the velocity component normal to the interface, whileu is acting as the
tangential, or shear, velocity. The results of this analysis are reported in Table I. Appendix
A shows how they can be obtained for some of the methods considered.

The first line refers to the method of characteristics (MOC) and represents the “physi-
cally” correct reference solution (in the sense of full consistency with the Euler governing

FIG. 8. Analysis of the linearized algorithms: the 2D domain.
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TABLE I

RP Solution with Different Upwind Methods
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equations). Clearly, FDS methods give the same result as the MOC (FDSROE and FDSPAN
solvers coincide in this small-perturbation analysis). Only the pressure perturbation (p̂ 6= 0)
affects the flux; density and shear velocity perturbations ( ˆρ 6= 0 andû 6= 0) have no effect
on the flux, just as physically required by the Eulerian model. FDS mimes (HLLC, HUS,
AUSMD, and AUSMV in Table I) behave in the same or in a similar way.

Conversely, we can observe that, in FVS methods, the predicted flux is sensitive not only
to the pressure perturbation but also to density and shear velocity perturbations. The two
methods, FVSSW and FVSVL, present a similar sensitivity to ˆρ, û, and p̂ and both give
nonphysical results.

Even the HLL method presents a behavior that is not consistent with the solution of the
Euler equations, as the flux is influenced by density and shear velocity perturbations.

Finally, AUSM methods exhibit particular behavior. In the AUSM-VEL version (in this
analysis the split of the velocity is on thev component), the fluxG at the interface(N,M +
1/2) reacts top̂ (with only a slight variation of the coefficient compared to the MOC); it
does not respond to the shear velocity perturbationû (as in the MOC) but is sensitive to ˆρ

with the sign of some coefficients opposite to the one that appears in FVS and HLL. This
last point may anticipate a somewhat antidissipative behavior of this method. The AUSM-M
and AUSM+ versions show a very unusual reaction; they do not respond to any perturbation
(pressure, density, or shear velocity). Although this is correct for density and shear velocity,
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it is clearly incorrect for pressure, where we should expect a physical influence on the flux
due to the propagation of waves.

One should note that the results reported in Table I are fully consistent with the predictions
seen in Fig. 6 and Fig. 7, in the sense that those methods that do behave correctly according
to the analysis of Table I are strongly affected by numerical instabilities, whereas those that
are highly (and incorrectly) dissipative, as far as density and shear velocity perturbations
are concerned, appear as carbuncle-free.

The results of the analysis shown in Table I can be used to develop a further study, defined
in [17] as the odd–even decoupling problem. We consider the previously seen uniform flow
(ρ0 = 1, u0 6= 0,v0 = 0, p0 = 1) over the rectangular domain (x, y), described by squared
cells of unit side. We introduce initial perturbations ˆρ◦, û◦, p̂◦ (the apex is the time step
counter) in an odd–even fashion along the coordinatey, so that the flow is described by
ρ◦ = 1± ρ̂◦,u◦ = u0± û◦,v◦ = 0, p◦ = 1± p̂◦, where the+sign refers to the cell(N,M)
and the− sign to the neighboring cells(N,M − 1) and(N,M + 1). Periodic boundary
conditions are prescribed in they direction; moreover, the flow is assumed to be uniform
alongx, so that the problem is reduced to one dimension. The results of Table I are then
used to perform the integration of the conservation laws, using the plain first-order scheme.
This kind of analysis is developed in [17] for density and pressure perturbations ( ˆρ◦ 6= 0
and p̂◦ 6= 0), with reference to the FDSROE and HLL methods. We also introduce the
shear velocity perturbation (û◦ 6= 0) and extend the analysis to all the previously mentioned
methods. Starting from the above set of initial perturbations ˆρ◦, û◦, p̂◦ (v̂◦ = 0), we describe
the integration process by the recursive formulas that are reported in Table II. Appendix B
shows how these formulas are obtained from Table I for some of the methods considered.
Perturbations at stepK + 1 (ρ̂K+1, ûK+1, p̂K+1) are evaluated on the basis of the data of
the previous stepK (ρ̂K , ûK , p̂K ). Since we have assumed the initial perturbation of the
velocity component alongy to be null (v̂◦ = 0), v̂K+1 = v̂K = v̂◦ = 0 results in all the
methods. Therefore, there are no recursive formulas for ˆvK in Table II. The time step of
the integration (1t) appears in the Courant numberν = √γ Dt

Dy , whereγ is the ratio of the
specific heats and is equal to 1.4 for air.

The MOC (used in the original Godunov suggestion), FDSROE, FDSPAN, and HLLC
methods, since they all present the same response to perturbations in Table I, naturally
give the same result in Table II. It is important to notice that, if the initial pressure is
uniform (p̂◦ = 0), but the density and shear velocity perturbations are not zero ( ˆρ◦ 6= 0,
û◦ 6= 0), the initially perturbed configuration is preserved (Fig. 9), as should be physically
expected in the framework of the Euler equations. Only the pressure perturbation (p̂◦ 6= 0)
induces flow variations through acoustic waves that travel up and down alongy. In Fig. 10,
this pressure perturbation is flattened because the Courant number used is lower than 1.0
(ν = 0.2). In the case of ˆρ◦ = 0, the density is isoentropically perturbed until, asK →∞,
ρ̂∞ = − p̂◦/γ (Fig. 10). In all the cases, the initial shear velocity perturbationû◦ remains
unaltered:̂u∞ = ûK = û◦. The HUS, AUSMV, and AUSMD methods provide evolutions
of the perturbations that are very similar to FDS methods, as the recursive formulas have
the same structure, with only slightly different coefficients.

The FVS methods (FVSSW and FVSVL are almost identical) damp any perturbation. The
shear velocity perturbation (û) decays independently from the others:û∞ = 0. However,
pressure and density perturbations interact with each other (Figs. 11 and 12): an initial
density perturbation ( ˆρ◦ 6= 0) can also induce a temporary pressure perturbation (p̂K 6= 0),
even for an initially uniform pressure (p̂◦ = 0). The final configuration, reached asK →∞,
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TABLE II

Integration with the Linearized Form of the Different Methods

MOC, ρ̂K+1 = ρ̂K +
(
−2ν

γ

)
p̂K

FDSROE, ûK+1 = ûK

FDSPAN, p̂K+1 = (1− 2ν) p̂K

HLLC

FVSSW ρ̂K+1 =
(

1− ν

γ

)
ρ̂K +

(
− ν
γ

)
p̂K

ûK+1 =
(

1− 2ν

γ

)
ûK

p̂K+1 = (ν)ρ̂K (1− 3ν) p̂K

FVSVL ρ̂K+1 =
(

1− ν
2

)
ρ̂K +

(
− ν

2

)
p̂K

ûK+1 = (1− 2ν)ûK

p̂K+1 =
(
ν

γ

γ + 1

)
ρ̂K

(
1− 3ν

γ

γ + 1

)
p̂K

HUS ρ̂K+1 = ρ̂K +
(
− ν

2

γ + 1

γ

)
p̂K

ûK+1 = ûK

p̂K+1 =
(

1− ν 3γ − 1

γ + 1

)
p̂K

HLL ρ̂K+1 = (1− 2ν)ρ̂K

ûK+1 = (1− 2ν)ûK

p̂K+1 = (1− 2ν) p̂K

AUSM-VEL ρ̂K+1 =
(

1+ ν
2

)
ρ̂K +

(
− ν

2

)
p̂K

ûK+1 = ûK

p̂K+1 =
(
νγ

2

)
ρ̂K

(
1− νγ

2

)
p̂K

AUSM-M, ρ̂K+1 = ρ̂K

AUSM+ ûK+1 = ûK

p̂K+1 = p̂K

AUSMD, ρ̂K+1 = ρ̂K + (−ν) p̂K

AUSMV ûK+1 = ûK

p̂K+1 = (1− νγ ) p̂K

FIG. 9. Odd–even decoupling problem: MOC, FDSROE, FDSPAN, and HLLC reactions to a density pertur-
bation.
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FIG. 10. Odd–even decoupling problem: MOC, FDSROE, FDSPAN, and HLLC reactions to a pressure
perturbation.

FIG. 11. Odd–even decoupling problem: FVSVL reaction to a density perturbation.

FIG. 12. Odd–even decoupling problem: FVSVL reaction to a pressure perturbation.
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FIG. 13. Odd–even decoupling problem: HLL reaction to a density perturbation.

is always uniform: ˆρ∞ = p̂∞ = 0 (Fig. 12). This picture is not consistent with the governing
equations, as is clearly shown in practical computations of highly rotational flows, where a
fictitious dissipation is introduced by these methods.

In the HLL method, each perturbation is damped, but independently from the others;
also, the behavior is incorrect (Figs. 13 and 14).

The various versions of the AUSM method present different evolutions of the perturba-
tions. In all the versions (AUSM-VEL, AUSM-M, and AUSM+), the shear velocity per-
turbation remains unaltered, without any coupling to other perturbations (û∞ = ûK = û◦).
The picture becomes different for pressure and density evolutions. In AUSM-VEL, the sign
of the coefficients in the recursive formulas generates a curious situation when relating
pressure and density. If we assume, for instance, an initially uniform pressure distribution
( p̂◦ = 0) and a nonzero density perturbation ( ˆρ◦ 6= 0), instead of preserving this condition,
the algorithm generates a transient, where not only does the density evolve, but a pres-
sure perturbation is also generated. Asymptotically, the transient moves toward a steady
configuration for the perturbations, and it can be recognized that, asK →∞, one obtains
ρ̂∞ = p̂∞ = γ

γ−1ρ̂
◦. The density perturbation is amplified by a factor of 3.5 (forγ = 1.4)

and an equal pressure perturbation is generated (Fig. 15). A similar result is also obtained

FIG. 14. Odd–even decoupling problem: HLL reaction to a pressure perturbation.
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FIG. 15. Odd–even decoupling problem: AUSM-VEL reaction to a density perturbation.

for an initially perturbed pressure (p̂◦ 6= 0) and uniform density ( ˆρ◦ = 0). In this case, both
pressure and density perturbations increase to ˆρ∞ = p̂∞ = p̂◦/(1− γ ) (Fig. 16). This kind
of result could already have been anticipated in the analysis summarized in Table I. The be-
havior of AUSM-M and AUSM+methods can be easily estimated in advance from Table I;
no reaction of the flux was predicted there and, therefore, all the perturbations in Table II
remain unaffected, without any mutual interaction (Figs. 17 and 18).

These results obtained for the AUSM versions are confirmed by practical numerical
experiments, where pressure oscillations are observed inside boundary-layer flows with
severe transverse density gradients (see, for instance, [9, 18, 23]). We have also experimented
with such behavior in our own numerical tests.

The recursive formulas of Table II can provide some insight into the generation and
development of carbuncle instabilities. In [17] we read that, for FDS methods, “if the
pressure field is continuously perturbed in a systematic manner, no matter how small the
pressure perturbations, ˆρ will grow without bound, albeit slowly.” In the first previously seen
example, the blunt-body flow (Fig. 6), the round-off error encountered in evaluating the flow
in the uniform region ahead of the bow shock systematically generates pressure perturbations
which are greatly amplified throughout the numerical transition of the captured shock. In

FIG. 16. Odd–even decoupling problem: AUSM-VEL reaction to a pressure perturbation.
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FIG. 17. Odd–even decoupling problem: AUSM-M and AUSM+ reactions to a density perturbation.

the second example of the shock propagating along the channel, the grid distortion at the
centerline generates amplified pressure perturbations inside the numerically captured shock.
The recursive formulas show that, for FDS and mime methods, the systematically generated
pressure perturbations tend to be damped, but this process generates density perturbations,
which are preserved and systematically grow. In contrast, with FVS methods, both the
pressure and density perturbations are damped, as well as in the HLL method.

In synthesis, according to our analysis and with reference to the carbuncle problem, it
would be possible to categorize FDS methods into the following four types.

a. Strong carbuncle prone schemes.These are schemes where pressure perturbations
damp out but meanwhile create density perturbations that remain constant (MOC, FDSROE,
FDSPAN, HLLC, HUS, AUSMD, and AUSMV).

b. Light carbuncle prone schemes.In these schemes pressure perturbations remain
constant and do not interact with density perturbations, which also remain constant (AUSM-
M and AUSM+).

c. Carbuncle-free schemes.In these schemes density perturbations damp out, with or
without mutual interacion with pressure perturbations (FVSSW, FVSVL, and HLL).

FIG. 18. Odd–even decoupling problem: AUSM-M and AUSM+ reactions to a pressure perturbation.



288 PANDOLFI AND D’AMBROSIO

d. The AUSM-VEL scheme.This is the only scheme where both pressure and density
perturbations induce a disturbance, which increases to a finite level, in the other variable;
this mechanism produces the carbuncle, but the coupling between the two variables is such
that the magnitude of the phenomenon is much less intense than for schemes belonging to
category a.

We would like to point out that the previously described analyses require the linearization
of the algorithm aboutv0 = v̂0 = 0: this is a rather significant situation in the context of
the carbuncle problem, since it reproduces the conditions where the carbuncle instability
increases; therefore, the analyses are very relevant to the present study.

Moreover, the analyses can provide forewarnings on how a proposed algorithm is going
to perform in practical computations with minimal efforts and without the need of carrying
out full numerical experiments. For instance, it has been suggested in [14] that AUSMV
and AUSMD be modified by defining a certain functionf = 1/ρ instead of a previous
definition f = p/ρ (see Eq. 32 in [25]). By adopting the previously presented analyses,
it can be shown that with this modification AUSMV and AUSMD reduce to the behavior
of AUSM-M or AUSM+. The two analyses can anticipate the numerical results shown in
Fig. 2 of [14] and have been fully confirmed in our specific numerical experiments related
to the examples of Figs. 6 and 7.

Our analyses can be generalized to the case withv0 6= 0, when the uniform flow runs
diagonally on the(x, y) domain. This extension clarifies why the carbuncle occurs about
normal shock waves and is only confined to the front region of the blunt-body flow in
Fig. 6, without propagating above or below the symmetry line. The recursive formulas
obtained for FDS methods, in cases whenv0 6= 0 and the corresponding perturbation ˆvK 6= 0
is introduced, are reported in Table III.

The presence ofv0 6= 0 promotes the generation of a perturbation ˆvK , even though ˆv◦ = 0,
for a prescribed perturbation̂p◦ 6= 0. However, the main effect ofv0 6= 0 is the introduction
of damping terms so that any kind of perturbation, initially prescribed or generated during a
transient, disappears asymptotically in time (Figs. 19 and 20). The damping processes due
tov0 6= 0 are purely dissipative and their magnitude increases withv0; these facts contribute
to confine the carbuncle instability in the neighborhood of the symmetry line of the blunt
body.

The effects ofv0 6= 0 are also quite evident in the second example, where a shock prop-
agates along a channel: the dissipation introduced by a finite value ofv0 (a simulation of
an oblique shock) tends to clean the distorted front of the shock and the irregularities of
Fig. 7c (FDSPAN) are totally removed forv0 = 0.35, as proved by our numerical exper-
iments (Fig. 21). As anticipated in the previous section, periodicity conditions along the

TABLE III

Recursive Formulas withv0 6= 0 for FDS Methods

ρ̂K+1 =
(

1− 2ν
v0√
γ

)
ρ̂K +

(
−2ν

v0√
γ

)
v̂K

√
γ

+
(

2
ν

γ

(
v0√
γ
− 1
))

p̂K

v̂K+1 = (1− 2ν)v̂K +
(
−2

ν√
γ

v0√
γ

)
p̂K

ûK+1 =
(

1− 2ν
v0√
γ

)
ûK

p̂K+1 =
(
−2νγ

v0√
γ

)
v̂K

√
γ

+ (1− 2ν) p̂K
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FIG. 19. Odd–even decoupling problem: FDS methods reaction to a density perturbation in the case ofv0 6= 0
(v0 = 0.35).

coordinatey are now imposed on the upper and lower boundaries of the duct. The dissipa-
tion introduced byv0 6= 0 is well known in the numerical prediction of the propagation of a
contact surface in a 1D problem using FDS methods or mimes: if the flow is at rest, a contact
surface retains its original sharpness, while in the presence of a propagation velocity, the
original discontinuity is continuously smoothed.

6. CURES FOR THE CARBUNCLE

Highly rotational flows, which are typical of high-speed-regimes, are accurately predicted
with upwind methods of the FDS family. Unfortunately, the deep sensitivity that these
methods display when dealing with the contact surface represents a source of dangerous
instabilities. Since the problem is not only of academic relevance but mainly of practical
interest, suggestions have been proposed in the literature to overcome such a critical point,
both to understand the nature of the deficiency and to recommend remedies. Curing methods

FIG. 20. Odd–even decoupling problem: FDS method reaction to a pressure perturbation in the case ofv0 6= 0
(v0 = 0.35).
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FIG. 21. Shock wave moving in a flow with a velocity component in they direction (density contours).

proceed normally from three observations, as previously discussed. First, the carbuncle
appears inside the zone of the numerical capture of a plane shock wave which is well
aligned with a grid line. Second, the carbuncle originates when the flux across the interface
normal to the shock itself is evaluated. Third, the source of the carbuncle has to be ascribed
to FDS or “FDS mime” methods. By focusing attention on these facts, cures or remedies
can be envisaged.

In [17] the following procedure is suggested. Each computational cell is inspected and
the difference between the local pressure and its level in any of the surrounding cells is
estimated. If such a difference overcomes a threshold value, the cell is flagged. In computing
the flux on the interface between two flagged cells, the algorithm is switched from FDSROE,
which is always used as the basic method, to HLL. The use of the latter method, which is
a dissipative one, is confined to the restricted area where the shock is captured and will not
generate spurious dissipations in strongly rotational flows. This cure is very efficient, as
proved by the results reported in [17]; however, the empirical assumption of the threshold
limit and the use of two totally different methods inside the code may not be so attractive.

A similar procedure is proposed in [25], but with some differences. Here, the detection
of critical cells is carried out by looking at the sign of the speed of acoustic characteristics
in any couple of adjacent cells. When a sonic transition through a compression is detected
across a given interface, the algorithm is then switched from an FDS (or similar) method to
a dissipative one, to compute the flux over the neighboring perpendicular interfaces. In [25],
the basic method can be either AUSMDV (a blend of AUSMD and AUSMV) or FDSROE.
The partner dissipative schemes used in the switching are respectively FVS (H¨anel version
[7]) and HLL. Even in this case, the cure is very efficient, as we have also experimented in
our numerical exercises by matching the basic method FDSPAN and the dissipative FVSVL
one. However, we have noted that the criterion used to detect the sonic line embedded in the
captured shock, that is, the change in sign of characteristic speeds (Eq. 39 in [25]), is correct
for shocks at rest, but it can fail for propagating shocks. However, it should be recalled that
the detection of moving shocks, typically performed in shock-fitting techniques, has always
been a critical point. Finally, as noticed for the previous cure [17], the introduction of a
second method into the algorithm may be not attractive, especially in flows characterized
by high-temperature effects.

The cure proposed in [20] offers interesting suggestions, because it does not require the
introduction of an alternative dissipative scheme but retains the same basic method, in par-
ticular FDSROE, with some variable dissipation injected into the algorithm in connection to
specific waves. The curing process is as follows. At any interface (N,M + 1/2) that sepa-
rates the cells (N,M) and (N,M + 1), the maximum difference between the characteristic
speeds computed in the cell centers is evaluated and its magnitude is introduced into that
variation of the algorithm known as theentropy fix[8]. One should note that this operation is
performed for all three waves and is not limited to the acoustic ones (as in [8]) for the specific
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purpose of avoiding the formation of an expansion shock. This procedure already provides
a reduction of the instability, but not enough, since it is not applied to the proper locations.
It has therefore been suggested in [20] that the difference of the characteristic speeds be
evaluated not only at the interface (N,M + 1/2) but also at the neighboring interfaces
(N − 1/2,M) (N + 1/2,M), (N − 1/2,M + 1), and (N + 1/2,M + 1). The analysis is
thus developed on a H-structure of interfaces about the central one (N,M + 1/2) and the
parameter to be introduced into theentropy fixat the interface (N,M + 1/2) is assumed to
be the maximum of the differences of the characteristic speeds across the five interfaces. The
detection method devised to introduce numerical dissipation at the interface (N,M + 1/2)
looks quite similar to the one reported in [25], but it does not require the identification of a
sonic line and recognizes only sharp transitions of flow properties. Moreover, the detection
does not introduce the abrupt switch to a partner dissipative algorithm but injects a variable
level of dissipation into the basic algorithm that is related to the magnitude of the difference
of the characteristic speeds. The results reported in [20] show that this cure is also very
efficient. However, we should note that, in the case of a parallel streamlines flow with a
severe transverse density gradient (ρN,M+1 6= ρN,M , as usually found in a high-speed flow
boundary layer), the difference of the speed of sound across the interface (N,M + 1/2)
parallel to the streamlines induces an incorrect dissipation at the interface.

A further interesting cure is proposed in [1]. Here, the basic algorithm is HLLEM, a
version of HLL, which recovers the contact surface by introducing antidiffusive terms related
to the second characteristic. The HLLEM method is obviously affected by the carbuncle
phenomenon. The attractive feature of this cure is that only a local analysis is required
and that there is no need to analyze the surrounding computational area, as in the previous
prescriptions. Attention is focused on the intermediate state of the primitive variables when
solving the RP, at a given interface, with the dissipative HLL scheme. If these values do not
over- or undershoot the initial values of the RP, then, those obtained with HLLEM should
not over- or undershoot either. If they do, the situation is considered potentially dangerous
as far as the carbuncle phenomenon is concerned and the antidiffusive terms are limited
to avoid any over- or undershooting. The resulting method, called HLLEMR, is therefore
a proper blending of HLL and HLLEM. As in the last cure [20], dissipation is gradually
introduced into the basic scheme without using a partner auxiliary method. The resulting
effects are very satisfactory, but the prescription is peculiar to the HLL family.

The analysis of the above remedies has been stimulating and led us to try to use a
prescription for curing the carbuncle in FDSPAN, which can also be used in the FDS with
the approximate solver of [15]. It is based on a detection routine, as in [20], but, in the
present case, does not include the central element of the H-structure of interfaces. Let us
consider, for instance, surface (N,M + 1/2) in Fig. 22. The first step of our cure consists in
determining whether a “carbuncle-danger” exists for this interface or not, and if so, to what
extent. To do this, we start to determine the maximum difference between the characteristic
speeds across the four interfaces connected to (N,M + 1/2), which are indicated with
crosses in Fig. 22. Such a maximum difference can be evaluated, considering, for instance,
surface (N + 1/2,M), as

εN+1/2,M = |ũN+1,M − ũN,M | + |aN+1,M − aN,M |, (1)

where ũ is the velocity component normal to the surface anda is the speed of sound.
Then, the largest differences between the four computed ones is assigned to the interface
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FIG. 22. The two steps of the cure.

(N,M + 1/2) as a measure of the likelihood that a carbuncle may start there:

ηN,M+1/2 = max{εN±1/2,M+K }K=0,1. (2)

In the following,ηN,M+1/2 is used to estimate the appropriate dissipation to be injected at the
interface (N,M + 1/2). It is important to notice that to avoid artificial viscosity from being
erroneously injected in the presence of transverse density gradients, surfaceN,M + 1/2
itself was excluded from the characteristic speed difference evaluation.

Onceη has been obtained, the RP is solved at (N,M + 1/2). In the case of a moderate
velocity of the contact surface and with the two acoustic waves traveling in opposite direc-
tions (see Fig. 22), two additional linear waves are imposed, one propagating leftward and
the other rightward. These two waves present the same intensity, which is assumed to be
equal to the product ofη with the difference between the conservative variables across the
contact surface. Thus, the global fluxF across surfaceN,M + 1/2 is evaluated as

FN,M+1/2 = Fd − ηN,M+1/2(wd − wc) (3)

or

FN,M+1/2 = Fc − ηN,M+1/2(wd − wc) (4)

depending on whether the entropy wave is inclined leftward or rightward (Fig. 22).
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FIG. 23. Supersonic inviscid flow around a blunt body atM∞ = 20 (density contours). FDSPAN with cure
for the carbuncle.

Such a procedure can easily be interpreted as the translation of theentropy fixoriginally
conceived for FDSROE (for the acoustic waves only) to the contact surface in FDSPAN. The
cure is very efficient. The unacceptable blunt-body results of Fig. 6c become completely
free of instabilities (Fig. 23) and, outside the shock-capturing zone, they are identical to the
reference values of SHOFIT (Fig. 6m). The propagating shock, with the disturbing shape of
Fig. 7c, becomes perfectly plane, without even the smallest perturbation. We consider the
cure very attractive, because it is applied only where it is needed, that is, at the responsible
interfaces inside the capturing zone of the shock. Moreover, it does not destroy the sharpness
of density or shear velocity gradients, since the amount of the additional dissipation here
becomes negligible.

7. CONCLUSIONS

In our work we show, through both numerical experiments and the linearized analyses
of the algorithms, that the so-called carbuncle phenomenon affects those flux-difference
splitting schemes that, when solving the Riemann Problem, explicitly take into account the
presence of a contact surface.

The analysis of the linearized algorithms, originally proposed in [17] and extended here to
a larger number of perturbations and to several different upwind methods, provides a useful
tool to estimate, in advance, the occurrence of the numerical instability in any method only
at the expense of some algebra and without the necessity of implementing the method in a
code. In addition, such an analysis helps us to understand the approach of different upwind
schemes to the Riemann problem and to appreciate how close (or far) they are from the
correct method of characteristics.

The cure that we propose as a remedy to the carbuncle effects appears to be effective
and efficient; it automatically introduces artificial dissipation only in those localized regions
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where some control of the carbuncle instability is required, but it does not act in the remaining
flow-field, where the numerical viscosity is only related to the basic scheme used.

APPENDIX A

How to Obtain the Formulas Presented in Table I

Here we show how the value of the flux at the interface reported in Table I (GM+ 1
2
=

(G1,G2,G3,G4)
T
M+ 1

2
) can be obtained for some of the upwind methods considered, in

particular for MOC, FDSROE, FDSPAN, FVSVL, HLL, AUSM-VEL, AUSM-M, and
AUSM+. We refer to the problem described in Section 5 and to the relative definitions
given there. The flow is governed by the Euler equations for a perfect gas. Since we suppose
the flow to be uniform alongx with any variation only occurring alongy, we hereafter
drop, in this Appendix, the indexN, which denotes a computational location, so that the
identificationN,M will be reduced toM . We assume initial values at cells(M)and(M + 1):

ρM = 1+ ρ̂, ρM+1 = 1− ρ̂,
uM = u0+ û, uM+1 = u0− û,
vM = 0, vM+1 = 0,
pM = 1+ p̂, pM+1 = 1− p̂.

(5)

Since perturbations ˆρ, û, and p̂ are small, one obtains

aM = √γ
(

1+ p̂

2
− ρ̂

2

)
, aM+1 = √γ

(
1− p̂

2
+ ρ̂

2

)
, (6)

whereγ is the ratio of the specific heats (γ = 1.4).
The conservative variablesW = (ρ, ρu, ρv,e)T and the components of the fluxG =

(ρv, ρuv, p+ ρv2, v(p+ e))T associated with they -direction, at cells(M) and(M + 1),
are

WM =

∣∣∣∣∣∣∣∣∣∣∣

1+ ρ̂
u0
(
1+ ρ̂ + û

u0

)
0

1+ p̂
γ − 1 +

u2
0

2

(
1+ ρ̂ + 2 û

u0

)

∣∣∣∣∣∣∣∣∣∣∣
;

(7)

WM+1 =

∣∣∣∣∣∣∣∣∣∣∣

1− ρ̂
u0
(
1− ρ̂ − û

u0

)
0

1− p̂
γ − 1 +

u2
0

2

(
1− ρ̂ − 2 û

u0

)

∣∣∣∣∣∣∣∣∣∣∣
and

GM =

∣∣∣∣∣∣∣∣
0
0
1
0

∣∣∣∣∣∣∣∣ ; GM+1 =

∣∣∣∣∣∣∣∣
0
0
1
0

∣∣∣∣∣∣∣∣ . (8)

On the basis of these initial data, we estimate fluxGM+ 1
2

at the interface(M + 1
2).
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MOC, FDSROE, and FDSPAN

The solution of the RP according to the MOC is based upon the conservation of the signals
R1,3 = p∓√γ v, R2 = p

ργ
, andR4 = u along the corresponding characteristic rays. The

flow properties at interface(M + 1
2) are evaluated from these conditions:

pM+ 1
2
+√γ vM+ 1

2
= pM +√γ vM , (9a)

pM+ 1
2
−√γ vM+ 1

2
= pM+1−√γ vM+1, (9b)

pM+ 1
2
/ρ

γ

M+ 1
2
=
{

pM/ρ
γ
M if p̂ > 0,

pM+1/ρ
γ
M+1 otherwise,

(9c)

uM+ 1
2
=
{

uM if p̂ > 0,

uM+1 otherwise.
(9d)

From Eqs. (5), we obtain

ρM+ 1
2
=
{

1+ ρ̂ − p̂
γ

if p̂ > 0,

1− ρ̂ + p̂
γ

otherwise,
(10a)

uM+ 1
2
=
{

u0+ û if p̂ > 0,

u0− û otherwise,
(10b)

vM+ 1
2
= p̂√

γ
, (10c)

pM+ 1
2
= 1. (10d)

Finally, the resulting fluxGM+ 1
2

is

GM+ 1
2
=

∣∣∣∣∣∣∣∣∣∣∣∣

p̂√
γ

u0
p̂√
γ

1(
γ

γ−1 +
u2

0
2

) p̂√
γ

∣∣∣∣∣∣∣∣∣∣∣∣
. (11)

This estimate corresponds to the exact solution of the RP because the perturbations ( ˆρ, û, p̂)
are small and no intense shock waves are expected. The solution is also the same for FDSROE
(since the approximate solver proposed in [19] becomes exact if small initial discontinuities
define the RP) and for FDSPAN [16] and for the method proposed in [15] (because the only
approximation in these two solvers is introduced in the case of intense shock waves).

FVSVL

In the FVSVL method [24], the following local splitting of the flux is defined:

G± = ± ρ
4a
(v ± a)2

∣∣∣∣∣∣∣∣∣
1
u

(γ − 1)v ± 2a

((γ−1)v±2a)2

2(γ 2−1) + u2

2

∣∣∣∣∣∣∣∣∣ . (12)
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The interface fluxGM+ 1
2

is given by

GM+ 1
2
= G+M +G−M+1, (13)

which, on the basis of the assumed initial values, becomes

GM+ 1
2
=

∣∣∣∣∣∣∣∣∣∣∣

√
γ

4 ( p̂+ ρ̂)
u0

√
γ

4

(
p̂+ ρ̂ + 2 û

u0

)
1

√
γ γ

2(γ 2− 1) (3p̂− ρ̂)+ u2
0

√
γ

8

(
p̂+ ρ̂ + 4 û

u0

)

∣∣∣∣∣∣∣∣∣∣∣
. (14)

The interface flux for FVSSW [21] is evaluated in a very similar manner.

HLL

In the HLL method [6], the flux at the interface is estimated as

GM+ 1
2
= λRGM − λLGM+1

λR− λL
+ λRλL

λR− λL
(WM+1−WM) (15)

where, as reported in [6], “λL andλR are the lower and upper bounds, respectively, for the
smallest and largest signal velocity, calculated according to some algorithm.” Using Eqs.
(7) and (8), we obtain

GM+ 1
2
=

∣∣∣∣∣∣∣∣∣∣

√
γ ρ̂

u0
√
γ
(
ρ̂ + û

u0

)
1

√
γ

γ−1 p̂+ u2
0

√
γ

2 ρ̂ + u2
0
√
γ û

u0

∣∣∣∣∣∣∣∣∣∣
. (16)

AUSM-VEL

Looking at the method AUSM-VEL and the relative definitions given in [11], we obtain
for the convective terms

v+M =
aM

4
, v−M+1 = −

aM+1

4
(17)

and for the pressure splitting

p+M =
pM

2
, p−M+1 =

pM+1

2
. (18)

Therefore, following [11], we have

vM+ 1
2
= v+M + v−M+1 =

√
γ

4
( p̂− ρ̂), (19a)

pM+ 1
2
= p+M + p−M+1 = 1, (19b)
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and

8M =

∣∣∣∣∣∣∣∣∣∣∣

1+ ρ̂
u0
(
1+ ρ̂ + û

u0

)
0

γ

γ − 1(1+ p̂)+ u2
0

2

(
1+ ρ̂ + 2 û

u0

)

∣∣∣∣∣∣∣∣∣∣∣
;

(20)

8M+1 =

∣∣∣∣∣∣∣∣∣∣∣

1− ρ̂
u0
(
1− ρ̂ − û

u0

)
0

γ

γ − 1(1− p̂)+ u2
0

2

(
1− ρ̂ − 2 û

u0

)

∣∣∣∣∣∣∣∣∣∣∣
.

The interface flux is defined as

GM+ 1
2
=
{
vM+ 1

2
8M if vM+ 1

2
> 0,

vM+ 1
2
8M+1 otherwise

+

∣∣∣∣∣∣∣∣∣
0
0

pM+ 1
2

0

∣∣∣∣∣∣∣∣∣ . (21)

It therefore follows that

GM+ 1
2
=

∣∣∣∣∣∣∣∣∣∣∣

√
γ

4 ( p̂− ρ̂)
u0

√
γ

4 ( p̂− ρ̂)
1(

γ

γ − 1 +
u2

0
2

)√γ
4 ( p̂− ρ̂)

∣∣∣∣∣∣∣∣∣∣∣
. (22)

AUSM-M

The AUSM-M method is described in [12]. On the basis of the definitions given there,
we obtain

M+M =
1

4
, M−M+1 = −

1

4
, (23a)

p+M =
pM

2
, p−M+1 =

pM+1

2
. (23b)

Therefore,

MM+ 1
2
= M+M + M−M+1 = 0, (24a)

pM+ 1
2
= p+M + p−M+1 = 1. (24b)

With the previous definitions of8M and8M+1, the interface flux is defined as

GM+ 1
2
=
{

MM+ 1
2
aM8M if vM+ 1

2
> 0,

MM+ 1
2
aM+18M+1 otherwise

+

∣∣∣∣∣∣∣∣∣
0
0

pM+ 1
2

0

∣∣∣∣∣∣∣∣∣ . (25)
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SinceMM+ 1
2
= 0, we have

GM+ 1
2
=

∣∣∣∣∣∣∣∣
0
0
1
0

∣∣∣∣∣∣∣∣ (26)

as reported in Table I.

AUSM+
The most recent AUSM+ method is described in [13]. With the definitions given there

and the usual initial values, we have

M+β =
1

4
+ β, M−β = −

1

4
− β, (27a)

P+α =
1

2
, P−α =

1

2
, (27b)

It therefore follows that

mM+ 1
2
=M+β +M−β = 0, (28a)

pM+ 1
2
= P+α pM + P−α pM+1 = 1. (28b)

Furthermore, a value of the interface speed of soundaM+ 1
2

is somehow determined in [13]
and the interface flux is defined as

GM+ 1
2
=
{

mM+ 1
2
aM+ 1

2
8M if mM+ 1

2
> 0,

mM+ 1
2
aM+ 1

2
8M+1 otherwise

+

∣∣∣∣∣∣∣∣∣
0
0

pM+ 1
2

0

∣∣∣∣∣∣∣∣∣ . (28)

SincemM+ 1
2
= 0, we have, as in the previous method,

GM+ 1
2
=

∣∣∣∣∣∣∣∣
0
0
1
0

∣∣∣∣∣∣∣∣ . (29)

The values of the components(G1)M+ 1
2
, (G2)M+ 1

2
, (G3)M+ 1

2
, and(G4)M+ 1

2
of the flux

GM+ 1
2

estimated in Eqs. (11), (14), (16), (22), (26), and (29) are reported in Table I.

APPENDIX B

How to Obtain the Formulas Presented in Table II

We use the evaluations of the interface flux reported in Table I to obtain the recursive
formulas shown in Table II. As in the previous Appendix A, we here drop the indexN to
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denote a computational location. We assume the initial data at the stepK given by

ρK = 1± ρ̂K , (30a)

uK = u0± ûK , (30b)

vK = 0, (30c)

pK = 1± p̂K , (30d)

where the+ sign refers to the cell(M) and the− sign to the neighboring cells(M − 1) and
(M + 1). Starting from stepK , we integrate, in time, the governing laws of conservation
at the cell(M), on the basis of the plain first-order scheme. The result at stepK + 1 is
represented by

WK+1
M =WK

M −
ν

|v| + a

(
GK

M+ 1
2
−GK

M− 1
2

)
, (31)

whereν is the Courant number. It is convenient to introduce the perturbations of the con-
servative variable at cell(M) and of the flux at interface(M + 1

2),

ŴM =

∣∣∣∣∣∣∣∣∣∣∣

ρ̂

u0
(
ρ̂ + û

u0

)
0

p̂
γ−1 + u2

02
(
ρ̂ + 2 û

u0

)

∣∣∣∣∣∣∣∣∣∣∣
, (31a)

ĜM+ 1
2
= GM+ 1

2
−

∣∣∣∣∣∣∣∣
0
0
1
0

∣∣∣∣∣∣∣∣ , (31b)

whereGM+ 1
2
is given in Table I. Since the flow properties at cells(M − 1) and(M + 1) are

the same, the difference of the flux at interfaces(M + 1
2) and(M − 1

2) is given by

GK
M+ 1

2
−GK

M− 1
2
= 2ĜM+ 1

2
. (32)

Moreover, the characteristic slope(|v| + a) tends to
√
γ . Therefore, the integration scheme

(Eq. 31) gives

ŴK+1
M = ŴK

M −
2ν√
γ

ĜK
M+ 1

2
. (33)

We define(Ĝi )
K
M+ 1

2
as being thei component of vector̂GK

M+ 1
2
. Then, from Eq. (33), the

integration of the first law of conservation (continuity) gives

ρ̂K+1
M = ρ̂K

M −
2ν√
γ
(Ĝ1)

K
M+ 1

2
. (34)
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The integration of the second law of conservation (x-momentum) and the above Eq. (34)
yields

ûK+1
M = ûK

M −
2ν√
γ

(−u0(Ĝ1)
K
M+ 1

2
+ (Ĝ2)

K
M+ 1

2

)
. (35)

The integration of the third conservation law (y-momentum) leads to

v̂K+1
M = v̂K

M −
2ν√
γ
(Ĝ3)

K
M+ 1

2
. (36)

The integration of the fourth law of conservation (energy) and Eqs. (34)–(36) give

p̂K+1
M = p̂K

M −
2ν√
γ
(γ − 1)

(
u2

0

2
(Ĝ1)

K
M+ 1

2
− u0(Ĝ2)

K
M+ 1

2
+ (Ĝ4)

K
M+ 1

2

)
. (37)

By taking the value of the components(Ĝ1)
K
M+ 1

2
, (Ĝ2)

K
M+ 1

2
, (Ĝ3)

K
M+ 1

2
, and(Ĝ4)

K
M+ 1

2
of

ĜK
M+ 1

2
that can be obtained from Table I for each method, we obtain the recursive formulas

of Table II.
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