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Some upwind formulations promote severe instabilities that originate in the numer-
ical capturing of shocks; this is known as the “carbuncle” phenomenon. An analysis
ofthe linearized form of the algorithms is carried out to explain and predict the gener-
ation of such instabilities. The information obtained is then used to design remedies
that only slightly and locally modify the original schemesg) 2001 Academic Press
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1. INTRODUCTION

Strong shock waves and density or shear layers characterize high-speed flows. T
features affect the choice of the most appropriate numerical methods to be used. In pe
ular, the requirement of capturing numerically strong shock waves moves attention tow
upwind methods. Among these, tfiax difference splittingFDS) approach looks to be the
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most promising, since it combines good shock-capturing properties with the capability
correctly dealing with density or shear layers, introducing, in the latter case, only a sir
amount of artificial diffusion into the solution (in the cases of steady density or shear lay
aligned with the grid, no artificial diffusion is injected). Unfortunately, several numeric:
experiments based on FDS methods have given unacceptable results, even for the sirm
problems: the structure of numerically captured shock waves often becomes widely
torted and the resulting picture would seem to justify the nicknameadfunclethat is
found in literature. A very clear introduction on this subject and some preliminary sugg
tions on how to circumvent shortcomings are given in [17]; some numerical experiences
the problem have previously been reported in the literature, though not in detail.

In this paper we would like to contribute to the understanding of such a disturbi
deficiency and to suggest remedies to resolve the problem.

First, we start with an analysis of some significant aspects of the carbuncle num
cal phenomenon. Then, we review some of the most popular upwind methods to pre
compressible flows. Afterwards, we show the results of numerical experiments that w
obtained in two significant examples proposed in [17]. These clearly show the carbur
instability and may represent the basis for understanding where the problem arises an
discussing possible remedies. At this point, we develop some simple analyses to learn
the different methods behave in the presence of perturbations that may trigger the instat
process. Finally, we look at some suggestions that have been reported in the literatut
prevent such a disturbing numerical deficiency and we then propose a cure.

2. THE CARBUNCLE PHENOMENON

The numerical instability that, in some cases, afflicts the numerical capturing of shc
waves is defined as the “carbuncle phenomenon.” A typical result of this kind of disturbi
event is shown in Fig. 1 and concerns the numerical simulation Mf.a= 20 inviscid
flow around a circular cylinder, a problem which is today considered a normal routine

FIG. 1. Carbuncle in the supersonic inviscid flow around a blunt body at= 20 (density contours).
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computational fluid dynamics. The distorted shape of the shock is not due to a progr
ming bug: the code used, which adopts a flux-difference splitting method (which in t
following is indicated as FDSPAN), works correctly for other problems and did not shc
any disturbances of this kind before the numerical grid was refined in the circumferen
direction beyond a certain extent.

The carbuncle phenomenon does not only belong to the numerical simulation of su
sonic flows on blunt bodies; it can, for instance, also be found in other problems, suct
in the numerical capturing of quasi-conical shock waves around slender bodies [10] o
the numerical simulation of interstellar flows in astrophysics [27]. Nevertheless, since
experience of the problem commenced when we were dealing with blunt bodies, we dec
to start from this point to illustrate some plain facts that we noticed during our study.

From numerical experiments on computing the classical supersonic flow around a b
body, the following was observed:

a. The carbuncle phenomenon originates inside the narrow computational region wi
a normal shock (in which the upstream relative flow is perpendicular to the shock fro
is numerically captured, but only when it is well aligned with one family of grid co:
ordinates; weak disturbancies, even at the round-off error level, in the initially reg
lar structure of the captured shock may induce severe instabilities that badly dege
ate into large oscillations, both in space and in time. If the numerical capturing of t
shock is replaced by its explicit treatment, gteock-fitting techniquéSHOFIT), all gen-
erations of the carbuncle instability are prevented, since the shock-capturing regiol
absent.

b. The grid aspect ratio is very significant in the establishment of the carbuncle p
nomenon: very elongated grid elements along the normal to the shock promote instabili
whereas meshes stretched along the tangent to the shock have a damping effect; this p
clearly visible in Fig. 2, where the blunt-body test case has been computed using diffe
grids, which have the same number of points (20) in the radial direction, but a differe
number of points (20, 80, 160, and 320) in the tangential direction.

c. The carbuncle phenomenon occurs in those upwind methods that solve the Rien
problem (RP), defined at the interface between two adjacent cells, on the basis of a tr
wave model.

d. Carbuncle-ike features are more evident in the plain first-order integration sche
than in more accurate reconstruction schemes, which denote a less severe developm
instabilities; this statement is supported by the numerical results shown in Fig. 3, wh
first-and second-order results obtained using the same grid are compared.

e. The carbuncle represents a numerical instability that is closely related to the convec
terms of the equations (the Euler part), which govern compressible flows; the effect
the diffusive terms which are present in the Navier—Stokes equations is not sufficien
improve the (poor) quality of the results. This is shown in Fig. 4, where the blunt-bo
problem is computed solving the full Navier—Stokes equations, using the same upw
method (FDSPAN) as in the previous examples. In this case, the grid is composed o
cells in the radial direction and is clustered close to the cylinder wall, but the cells’ asp
ratio in the bow shock region has been maintained equal to that of the inviscid computat
From these results, it is evident that one cannot rely on the natural viscosity to damp
numerical instability, because even for unpractically low Reynolds numbers, the solutiol
still affected by the carbuncle.
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FIG. 2. Supersonic inviscid flow around a blunt bodyM, = 20 (density contours). Effect of the tangential
refinement. An enlarged view of the grid in the region where the carbuncle occurs is shown above each resu

From these facts, which can easily be reproduced in simple numerical experiments,
have drawn some conclusions:

1. The instability is generated by solving the RP on those interfaces that are orien
with the unit vector parallel to the normal shock (those whose dimension is indicated as
in Fig. 5); if the grid element is highly elongated in this direction, tangential to the shock,

FDSPAN
1st order,

FIG. 3. Carbuncle in the supersonic inviscid flow around a blunt bodyl at= 20 (density contours). First-
order (left) and second-order (right) results.
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FDSPAN

FIG. 4. Supersonic viscous flow around a blunt bodywat = 20 (density contours). From left to right, the
Reynolds number is equal to4& - 104, 1%, and 106.

in case a of Fig. 5, the time step that will be used to integrate the conservation equation:
that cell will be the one dictated by the Courant—Friedrichs—Lewy (CFL) condition relat
to the other surface, the one whose dimension is indicatedja$herefore, the RP across
the interfaces\& will be solved using a time step that is smaller than the one which shou
be necessary for them alone. In this way, some additional numerical diffusion is introdu
into the fluxes across those surfaces and this explains why the carbuncle is less intense
this kind of grid aspect ratio. Conversely, if the situation is as depicted in case b of Fig
the time step that will be used will be the one which is related directly to the interface w
dimensionAé&, so that no additional artificial diffusion will be introduced.

2. The carbuncle phenomenon is connected to those solutions of the RP that expli
take into account the contact surface; this fact is usually shown by its occurrence in F
approaches; the explicit treatment of the contact surface seems to be the essential po
the problem.

3. Itis convenient to focus attention on the algorithms based on the first-order integrat
scheme [17]; in this case, the initial discontinuity of the RP shows its largest amplitude
the relevance of the upwind method to the carbuncle occurrence becomes more impol
despite the higher numerical dissipation related to the first-order scheme.

less carbuncle AE,

An

flow direction 1
.—’.

more carbuncle AE“

FIG.5. Aspect ratio of the cells and carbuncle occurrence.
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On the basis of these conclusions, it would seem convenient to start with an examina
of the features and characteristics of upwind methods.

3. UPWIND METHODS

Upwind methods present the appealing feature of introducing the elements of the w
propagation phenomenology in the integration of conservation laws (CL). In their constr
tion, the partial differential form of the governing equations (PDE) plays a fundamen
role in estimating the flux over the surface that bounds the control volume considered
the CL.

For the purpose of reviewing different upwind methods, we examine the 1D invisc
problem and define the fluky 1/ at the interface that separates two neighboring chlls,
andN + 1. The fluxFy1/2 is estimated by solving an RP, that is, the evolution in time o
an initial flow discontinuity (constructed with the initial dataditandN + 1), in terms of
propagating waves.

We consider afirst group of upwind methods, where thefiyx, - is evaluated through-
out the full and correct interaction between the initial data at the desmdN + 1. The
RP is solved according to the three-wave model described by the PDE (evolution of smc
waves) and by the CL (jump conditions for propagating discontinuities). The initial data
N andN + 1 contribute together to the development of taeusticgenuinely nonlinear
waves (or shocks), related to the characteristic famiigs= u  a, and of thecontact
surfacelinearly degenerated wave, associated to the characteristicu. This procedure,
the Riemann approachs defined in [6], can be considered the direct heir of the work c
Godunov [5] and represents the basic feature of the FDS methods. It is worthwhile to p«
out that the explicit treatment of the contact surface is the keynote of FDS methods.

The solution of the RP can be carried out exactly, through iterations based on the met
of characteristics (MOC), matched to the proper jump conditions in the presence of
continuities. However, to save computing time, approximate solvers of the RP have b
proposed. Among these, mention should be made of the one suggested in [19] (FDSR
an exact solver of a linearized definition of the RP, the one suggested in [15], which
an approximate solution of the actual RP, and the mirror image of the latter proposec
[1L6](FDSPAN).

In a second group of upwind methods, the fle, 1,2 is evaluated by adding the indi-
vidual contributions of the cellsl andN + 1, where each contribution is estimated locally,
in N or N 4 1, without the establishment of any mutual interaction between the two neig
boring cells. These are thkeix-vector splitting FVS) methods, inspired by tHgoltzmann
approach as suggested in [6]. The contact surface, which in some flow configurations nr
represent a strong discontinuity, is not treated explicitly and its content can be spread ¢
two waves traveling in opposite directions. This leads to incorrect diffusion of the co
tact surface and the algorithm results tend to be highly dissipative in strongly rotatio
flows. Among the FVS methods, mention can be made of the original one proposed in |
(FVSSW) and the subsequent one suggested in [24] (FVSVL).

The splitting method proposed in [3, 6] and known in the literature as HLL, or HLLE
is conceived as an FDS approach, but the contact surface is definitely ignored, as only
acousticwaves are taken into consideration. As a result, only a weak interaction betwe
the cellsN andN + 1 exists in the determination &fy,.1/> and the algorithm introduces
a strong dissipation related to the intermediate wave.



UPWIND METHODS AND CARBUNCLE PHENOMENON 277

In recent years, thadvection upstream splitting meth@dUSM) has been proposed.
Here, the fluxFn 1,2 is considered as being composed of a “convective” part and a “pre
sure” part. The first is evaluated on the basis of a strong interaction betweé&h dine
N + 1 cells, whereas, for the second, no interaction occurs. There are different version
the AUSM method: one is based on a velocity splitting (AUSM-VEL) [11], a second or
refers to a Mach number splitting (AUSM-M) [12], and a third one has been proposed mi
recently (AUSMt) [13].

With the exception of FDS methods, which explicitly account for the contact surfac
none of the others reproduces a full and correct interaction between the initial 8aéandt
N + 1. Many suggestions can therefore be found in the literature, for methods that pre:
these deficiencies, to restore the missing contact surface and thus the full interactio
estimateFn1/2. In thehybrid upwind schem@HUS) [2], an FVS method is upgraded to
the FDS level, by introducing the explicit treatment of the second wave; for our pres
analysis, we have reconstructed an HUS method by implementing elements from FDSF
in FVSVL. The HLL method has also been modified to recover the missing contact surfa
as indicated in [4] (HLLEM) or in [22] (HLLC). A restoration of the contact surface ha
also been worked out for the AUSM family (AUSMV and AUSMD) [25, 26]. We hereafte
refer to these methods (HUS, HLLEM, HLLC, AUSMV, and AUSMD) as “mimes” of the
FDS.

In the present paper, we report the results of numerical experiments obtained \
FDSROE and FDSPAN for flux-difference splitting, with FVSSW and FVSVL for flux-
vector splitting, with HLL (or HLLE), and with AUSM-VEL, AUSM-M, and AUSM
for advection upstream splitting; as far as FDS mimes are concerned, we consider a |
version (FDSPAN coupled to FVSVL), HLLC (where the wave velocities are determine
from FDSPAN), and finally AUSMV and AUSMD.

4. TWO SIGNIFICANT EXAMPLES

In this section, we will show the results of numerical experiments carried out usi
different upwind methods on two significant examples.

The first example refers to the inviscid supersonic fldd,{ = 20) around a circular
cylinder. The grid is shown in Fig. 6a and is composed of 20 radials and 320 tangen
intervals; one should note that only one out of five grid lines is drawn in the picture. T
mesh is very elongated in the radial direction to emphasize the effects of the carbun
As far as the boundary conditions are concerned, uniform upstream values are impose
the outer radial boundary, impermeability is prescribed at the wall, and flow properties
extrapolated at the boundaries where the outflowing gas is supersonic. All the computat
have been carried out with the plain first-order scheme and the same numerical treatt
at the wall.

The results are reported in Fig. 6, in terms of density contour lines. We can observe
FDS methods (FDSROE in Fig. 6b and FDSPAN in Fig. 6¢) exhibit a well-pronounc
carbuncle, which also appears in the FDS mimes. The instability in HLLC in Fig. 6e
as intense as in FDS; AUSMD, in Fig. 6g, also shows a remarkable carbuncle. Somev
better—although still unacceptable—results are obtained with HUS (Fig. 6d) and AUSN
(Fig. 6f). In contrast, FVS methods exhibit the complete absence of the instability (FVS
in Fig. 6h); even the HLL splitting method is totally carbuncle-free, as is shown in Fig. ¢
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FIG. 6. Supersonic inviscid flow around a blunt bodyM{, = 20 (density contours).

Moderate, but nevertheless disturbing, anomalies are presented by the remaining Al
methods (AUSM-VEL in Fig. 6j, AUSM-M in Fig. 6k, and AUSM in Fig. 6l). One should
note that density contour lines appear to be more sensitive in showing anomalies, whe
those related to the Mach number tend to attenuate the irregularity. Finallghtiok-
fitting techniguéSHOFIT), in the unusual matching with an FDS method (here FDSPAN
presents perfect results, as shown in Fig. 6m; as previously mentioned, this happens be
the explicit treatment of the bow shock does not require any shock-capturing region.
From the results reported in Fig. 6, we can conclude that those methods that explic
deal with the contact surface, by introducing a significant interaction between the init
data atN and N + 1, display clear evidence of the carbuncle phenomenon; in contra
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FIG. 7. Moving shock atM,, = 6 (density contours).

when such an interaction is barely taken into account, or even totally ignored, no carbul
instability occurs. The AUSM versions present some intermediate behavior.

A second significant example is now considered [17]. A shock propagates down a stra
duct, at the speed dfls, = 6.0. The flow is inviscid. The grid has 800 cells along the duc
and 20 in the transverse direction. Each cell is a square with unit side, except those or
centerline, which are distorted, as shown in Fig. 7a. The distortion, in fact, looks much m
amplified there, since the one actually imposed presents a perturbation in the vertical sic
Ay = +10-3, which would be undetectable at the correct scale. The example propose:
[17] would suggest a much smaller perturbatiavy(= +10-9), but a larger value has here
been assumed to give more emphasis to the problem. Boundary conditions are presc
as follows. The propagating shock is strong enough for the flow entering the duct at
inlet boundary to be supersonic: then, all the flow properties are prescribed here. In
attempt to simulate an infinitely long duct, nonreflecting simple wave boundary conditic
are imposed at the outlet. The upper and lower boundaries are considered as solid \
except for the case taken into account at the end of Section 5, where periodicity conditi
are imposed.

The shock begins its propagation from the left side of the duct, moving rightward wi
a perfectly plane shape. Some disturbances are induced on the centerline and, depe
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on the method used, they can grow and deteriorate, or just remain confined. The nume
results are reported as density contour lines in Fig. 7 and show the shock in the ri
portion of the duct, and more specifically in the last 100 cells. We can observe the se
kind of results that have already been seen in the blunt-body example. The FDS mett
and their mimes show terrible shapes for the shock, once more justifying the carbur
denomination. (Figs. 7b—g). The methods related to FVS and the HLL splittings do r
present any deterioration (Figs. 7h, i). The AUSM methods also show slight instabiliti
here; the latter can be seen only for AUSM-VEL (Fig. 7j), but not for AUSM-M (Fig. 7K)
or AUSM+ (Fig. 7I), but also become clearly visible in these cases, if the grid perturbati
is raised to higher levels.

The results obtained in this second example are in agreement with those reported fo
first one and confirm the previous conclusions on the performances to be expected fron
different upwind methods.

5. ANALYSES OF THE LINEARIZED ALGORITHMS

We consider, in a 2D domaimnx(y), two squared cells with unit sideN¢ M) and
(N, M + 1), whose centers are located respectivelx@tm), Yn,m) and atxn m+1) =
XN My YNLM+1) = Yonomy + 1, and a gas flowing with the velocity=u-i+ v - j. Uni-
form conditions are assumed, with normalized valpgs- 1, ug # 0, vg = 0, andpy = 1.
Density, shear velocity, and pressure perturbatigngi( p) are then prescribed and the
flow propertieso = 1+ p,u = uUg =+ 0, v = 0, andp = 1 &+ p are defined, with the sig#
or — used respectively in the celN(; M) or (N, M + 1) (Fig. 8). By considering the
linearized form of the algorithm for the different methods, we evaluate the Glux
(pv, puv, p+ pv?, v-(p+e)' atthe interfac&N, M + 1/2). One should note that, in
this problem,v is the velocity component normal to the interface, whilis acting as the
tangential, or shear, velocity. The results of this analysis are reported in Table I. Apper
A shows how they can be obtained for some of the methods considered.

The first line refers to the method of characteristics (MOC) and represents the “phy
cally” correct reference solution (in the sense of full consistency with the Euler governi
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FIG. 8. Analysis of the linearized algorithms: the 2D domain.
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TABLE |
RP Solution with Different Upwind Methods

(Gwm4y2 (G2)m41/2 (Ga)mt1/2 (Ga)m+1/2
1. Uo \ . N2 Uo? \ .
MOC, ( —) p <+—> p 1 (Jr— + ) p
FDSROE, vy vy v-1lo2yy
FDSPAN,
HLLC
1 N N Up N 1] N \/? - a
FVSSW o+ (+—)( 22+ ) 1 (+ ) —p+3
( 2\ﬁ)(p P 20 P2 +Pp 20 -1 (=p +3D)

FVSVL <+ﬂ)(b+b> (+“°f)(ﬁ+zui+p) 1 (+ VVY )(—ﬁ+3b)
0

()/+1)>A ( y+1 UO)A ( JY By -1 Uoz(}/'i'l))A
HUS n yroth 1 v Yo®
(4ﬁp Y 5)P 2 -1 8 w7 )P
. L2 i
HLL oy (+oy?) (/3 + uﬂ) 1 (+ N )z) - Cuty o
0 0
e
y—1
2
AUSM-VEL (+“/—7) (—h+P) (+ u°‘/7) ~p+D) 1 (+ v */7) ~p+D
4 4 y-1 8
AUSM-M, 0 0 1 0
AUSM+
2
AUSMD, ( g) B (+ u";ﬁ) P 1 <+2 Wyl 4 f) )
AUSMV =D

equations). Clearly, FDS methods give the same result as the MOC (FDSROE and FDSI
solvers coincide in this small-perturbation analysis). Only the pressure perturlfaton)
affects the flux; density and shear velocity perturbatigng:(0 and( # 0) have no effect
on the flux, just as physically required by the Eulerian model. FDS mimes (HLLC, HU
AUSMD, and AUSMYV in Table I) behave in the same or in a similar way.

Conversely, we can observe that, in FVS methods, the predicted flux is sensitive not
to the pressure perturbation but also to density and shear velocity perturbations. The
methods, FVSSW and FVSVL, present a similar sensitivity té, and p and both give
nonphysical results.

Even the HLL method presents a behavior that is not consistent with the solution of
Euler equations, as the flux is influenced by density and shear velocity perturbations.

Finally, AUSM methods exhibit particular behavior. In the AUSM-VEL version (in this
analysis the split of the velocity is on the&eomponent), the flug at the interfacéN, M +
1/2) reacts top (with only a slight variation of the coefficient compared to the MOC); it
does not respond to the shear velocity perturbaii¢as in the MOC) but is sensitive o ~
with the sign of some coefficients opposite to the one that appears in FVS and HLL. T
last point may anticipate a somewhat antidissipative behavior of this method. The AUSM
and AUSM+- versions show a very unusual reaction; they do not respond to any perturbat
(pressure, density, or shear velocity). Although this is correct for density and shear veloc
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it is clearly incorrect for pressure, where we should expect a physical influence on the {
due to the propagation of waves.

One should note that the results reported in Table | are fully consistent with the predictic
seenin Fig. 6 and Fig. 7, in the sense that those methods that do behave correctly acco
to the analysis of Table | are strongly affected by numerical instabilities, whereas those
are highly (and incorrectly) dissipative, as far as density and shear velocity perturbati
are concerned, appear as carbuncle-free.

The results of the analysis shown in Table | can be used to develop a further study, defi
in [17] as the odd—even decoupling problem. We consider the previously seen uniform f|
(po = 1,ug # 0,v9 = 0, po = 1) over the rectangular domair,(y), described by squared
cells of unit side. We introduce initial perturbatiops, 0°, p° (the apex is the time step
counter) in an odd—even fashion along the coordiyateo that the flow is described by
p° =1+ p°U° =uUg=£0°v°=0,p°=1= p°,wherethet signreferstothe ce(N, M)
and the— sign to the neighboring celldN, M — 1) and (N, M + 1). Periodic boundary
conditions are prescribed in thedirection; moreover, the flow is assumed to be uniform
alongx, so that the problem is reduced to one dimension. The results of Table | are tt
used to perform the integration of the conservation laws, using the plain first-order sche
This kind of analysis is developed in [17] for density and pressure perturbapéns Q”
and p° # 0), with reference to the FDSROE and HLL methods. We also introduce tf
shear velocity perturbatiofi{ # 0) and extend the analysis to all the previously mentione
methods. Starting from the above set of initial perturbatjgh§, p° (v° = 0), we describe
the integration process by the recursive formulas that are reported in Table II. Appendi
shows how these formulas are obtained from Table | for some of the methods conside
Perturbations at stef§ + 1 (5% *1, GK+1, pK+1) are evaluated on the basis of the data of
the previous stefk (5%, 0%, pX). Since we have assumed the initial perturbation of the
velocity component along to be null ¢° = 0), 9¥*! = X = 9° = 0 results in all the
methods. Therefore, there are no recursive formulas'fom™Table Il. The time step of
the integration At) appears in the Courant numhet= ﬁg—;, wherey is the ratio of the
specific heats and is equal to 1.4 for air.

The MOC (used in the original Godunov suggestion), FDSROE, FDSPAN, and HLL
methods, since they all present the same response to perturbations in Table I, natu
give the same result in Table II. It is important to notice that, if the initial pressure
uniform (p° = 0), but the density and shear velocity perturbations are not zére- (,
0° # 0), the initially perturbed configuration is preserved (Fig. 9), as should be physica
expected in the framework of the Euler equations. Only the pressure perturkfatignQ)
induces flow variations through acoustic waves that travel up and down pldémérig. 10,
this pressure perturbation is flattened because the Courant number used is lower tha
(v = 0.2). Inthe case 0p” = 0, the density is isoentropically perturbed until kas»> oo,

0 = —p°/y (Fig. 10). In all the cases, the initial shear velocity perturbafioremains
unalteredi® = 0K = (°. The HUS, AUSMV, and AUSMD methods provide evolutions
of the perturbations that are very similar to FDS methods, as the recursive formulas h
the same structure, with only slightly different coefficients.

The FVS methods (FVSSW and FVSVL are almostidentical) damp any perturbation. T
shear velocity perturbatiorl] decays independently from the othe@i§® = 0. However,
pressure and density perturbations interact with each other (Figs. 11 and 12): an in
density perturbations® # 0) can also induce a temporary pressure perturbafibn£ 0),
even for an initially uniform pressur@{ = 0). The final configuration, reachedlias— oo,
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TABLE Il
Integration with the Linearized Form of the Different Methods

283

2
MOC, ﬁK+1 — K + (_7‘)) ﬁK
FDSROE, 0K+ = ax
FDSPAN, p<+ = (1—20)pX
HLLC
FVSSW <+ = (1 - ;)@K + (—%) pK
O+t = (1 _ @)OK
¥
Pt = )p* (1-30)p*
FVSVL PR+ — (1 - %)bK + (—%) pK
ot = (1—2v)0K
pere (vt ) (1-3-L5 )
+1
HUS HK+L — ~K _ry )‘K
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FIG.9. Odd-even decoupling problem: MOC, FDSROE, FDSPAN, and HLLC reactions to a density pert

bation.
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FIG. 10. Odd-even decoupling problem: MOC, FDSROE, FDSPAN, and HLLC reactions to a presst

perturbation.
0.02 T | | T T
. . A0 . ~0 _ . A0 __ . A
: P #0 L ab=0 0 pP=0 0 pE—
‘ L or=02 - ume
.
= PPN o o -
=1 cho-e—e—ee-e—e—e-o- 8-6 &-8= 48 G- -850~ -5-0-0-1
L H H ! .
B e T A hk -
0.02 i I I i i
0 5 10 15 20 25 30

time step K

FIG.11. Odd—even decoupling problem: FVSVL reaction to a density perturbation.
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FIG. 12. Odd-even decoupling problem: FVSVL reaction to a pressure perturbation.



UPWIND METHODS AND CARBUNCLE PHENOMENON 285

L I _

-0.02 i i i
time step K

FIG. 13. Odd—even decoupling problem: HLL reaction to a density perturbation.

is always uniformp® = p* = 0(Fig. 12). This picture is not consistent with the governing
equations, as is clearly shown in practical computations of highly rotational flows, wher
fictitious dissipation is introduced by these methods.

In the HLL method, each perturbation is damped, but independently from the othe
also, the behavior is incorrect (Figs. 13 and 14).

The various versions of the AUSM method present different evolutions of the perturt
tions. In all the versions (AUSM-VEL, AUSM-M, and AUSM), the shear velocity per-
turbation remains unaltered, without any coupling to other perturbativhs 0K = 0°).
The picture becomes different for pressure and density evolutions. In AUSM-VEL, the s
of the coefficients in the recursive formulas generates a curious situation when rela
pressure and density. If we assume, for instance, an initially uniform pressure distribus
(p° = 0) and a nonzero density perturbatiar € 0), instead of preserving this condition,
the algorithm generates a transient, where not only does the density evolve, but a
sure perturbation is also generated. Asymptotically, the transient moves toward a ste
configuration for the perturbations, and it can be recognized th#t,-as co, one obtains
o = P> = y%l,éo. The density perturbation is amplified by a factor of 3.5 (foe 1.4)
and an equal pressure perturbation is generated (Fig. 15). A similar result is also obta

0.02
Popr=o ' oae=0 ! pP#0 ! p
: - ov=02 ;)‘i“
Y030 S A RRH-P SR -
. . ‘ ‘ |
zi: 0—e—a gé"ﬁ' -ty ,
1Y) M W R — S _
0 4 8 12 16 20

time step K

FIG. 14. Odd-even decoupling problem: HLL reaction to a pressure perturbation.
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time step K

FIG. 15. Odd-even decoupling problem: AUSM-VEL reaction to a density perturbation.

for an initially perturbed pressur@{ # 0) and uniform density{” = 0). In this case, both
pressure and density perturbations increag€te="p> = p°/(1 — y) (Fig. 16). This kind

of result could already have been anticipated in the analysis summarized in Table I. The
havior of AUSM-M and AUSM+ methods can be easily estimated in advance from Table
no reaction of the flux was predicted there and, therefore, all the perturbations in Tabl
remain unaffected, without any mutual interaction (Figs. 17 and 18).

These results obtained for the AUSM versions are confirmed by practical numeri
experiments, where pressure oscillations are observed inside boundary-layer flows
severe transverse density gradients (see, forinstance, [9, 18, 23]). We have also experim
with such behavior in our own numerical tests.

The recursive formulas of Table Il can provide some insight into the generation a
development of carbuncle instabilities. In [17] we read that, for FDS methods, “if tt
pressure field is continuously perturbed in a systematic manner, no matter how small
pressure perturbationswill grow without bound, albeit slowly.” In the first previously seen
example, the blunt-body flow (Fig. 6), the round-off error encountered in evaluating the fl
in the uniform region ahead of the bow shock systematically generates pressure perturba
which are greatly amplified throughout the numerical transition of the captured shock.

0 30 60 90 120 150
time step K

FIG. 16. Odd-even decoupling problem: AUSM-VEL reaction to a pressure perturbation.
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FIG. 17. Odd-even decoupling problem: AUSM-M and AUSMeactions to a density perturbation.

the second example of the shock propagating along the channel, the grid distortion ai
centerline generates amplified pressure perturbations inside the numerically captured st
The recursive formulas show that, for FDS and mime methods, the systematically gener
pressure perturbations tend to be damped, but this process generates density perturbz
which are preserved and systematically grow. In contrast, with FVS methods, both
pressure and density perturbations are damped, as well as in the HLL method.

In synthesis, according to our analysis and with reference to the carbuncle probler
would be possible to categorize FDS methods into the following four types.

a. Strong carbuncle prone scheme3hese are schemes where pressure perturbatio
damp out but meanwhile create density perturbations that remain constant (MOC, FDSR
FDSPAN, HLLC, HUS, AUSMD, and AUSMV).

b. Light carbuncle prone schemedn these schemes pressure perturbations rema
constant and do not interact with density perturbations, which also remain constant (AUS
M and AUSMH-).

c. Carbuncle-free schemesln these schemes density perturbations damp out, with «
without mutual interacion with pressure perturbations (FVSSW, FVSVL, and HLL).
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FIG. 18. Odd-even decoupling problem: AUSM-M and AUSMeactions to a pressure perturbation.
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d. The AUSM-VEL schemeThis is the only scheme where both pressure and densi
perturbations induce a disturbance, which increases to a finite level, in the other varia
this mechanism produces the carbuncle, but the coupling between the two variables is
that the magnitude of the phenomenon is much less intense than for schemes belongi
category a.

We would like to point out that the previously described analyses require the linearizat
of the algorithm abouty = ©° = 0: this is a rather significant situation in the context of
the carbuncle problem, since it reproduces the conditions where the carbuncle instak
increases; therefore, the analyses are very relevant to the present study.

Moreover, the analyses can provide forewarnings on how a proposed algorithm is gc
to perform in practical computations with minimal efforts and without the need of carryir
out full numerical experiments. For instance, it has been suggested in [14] that AUSN
and AUSMD be modified by defining a certain functidn= 1/p instead of a previous
definition f = p/p (see Eg. 32 in [25]). By adopting the previously presented analyse
it can be shown that with this modification AUSMV and AUSMD reduce to the behavic
of AUSM-M or AUSM+. The two analyses can anticipate the numerical results shown
Fig. 2 of [14] and have been fully confirmed in our specific numerical experiments relat
to the examples of Figs. 6 and 7.

Our analyses can be generalized to the case with 0, when the uniform flow runs
diagonally on thgx, y) domain. This extension clarifies why the carbuncle occurs abot
normal shock waves and is only confined to the front region of the blunt-body flow
Fig. 6, without propagating above or below the symmetry line. The recursive formul
obtained for FDS methods, in cases whgg: 0 and the corresponding perturbatidh 2 0
is introduced, are reported in Table Il1.

The presence af # 0 promotes the generation of a perturbatiénéven though® = 0,
for a prescribed perturbatigit # 0. However, the main effect @f # 0 is the introduction
of damping terms so that any kind of perturbation, initially prescribed or generated durin
transient, disappears asymptotically in time (Figs. 19 and 20). The damping processes
tovg # 0 are purely dissipative and their magnitude increaseswyjtiese facts contribute
to confine the carbuncle instability in the neighborhood of the symmetry line of the blu
body.

The effects ofug £ 0 are also quite evident in the second example, where a shock prec
agates along a channel: the dissipation introduced by a finite valug(afsimulation of
an oblique shock) tends to clean the distorted front of the shock and the irregularities
Fig. 7c (FDSPAN) are totally removed fop = 0.35, as proved by our numerical exper-
iments (Fig. 21). As anticipated in the previous section, periodicity conditions along t

TABLE IlI
Recursive Formulas withvy # 0 for FDS Methods

nK
AK+1 1_2Vﬂ)“K + (_zuﬂ)v_ + (23(&_1))AK
’ (-2 5) NN A\ )P
P+ — (1— 20)5K + (—2L ﬂ) pK

Y VY

QK = (1—2vi)aK

X NG
prH — (—2uy i) " + (1—2v)p*

VYT
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FIG.19. Odd-even decoupling problem: FDS methods reaction to a density perturbation in thewgagelof
(Uo = 035)

coordinatey are now imposed on the upper and lower boundaries of the duct. The dissi
tion introduced byg # 0 is well known in the numerical prediction of the propagation of ¢
contact surface in a 1D problem using FDS methods or mimes: if the flow is at rest, a con

surface retains its original sharpness, while in the presence of a propagation velocity,
original discontinuity is continuously smoothed.

6. CURES FOR THE CARBUNCLE

Highly rotational flows, which are typical of high-speed-regimes, are accurately predic
with upwind methods of the FDS family. Unfortunately, the deep sensitivity that the:
methods display when dealing with the contact surface represents a source of dange
instabilities. Since the problem is not only of academic relevance but mainly of practi
interest, suggestions have been proposed in the literature to overcome such a critical f
both to understand the nature of the deficiency and to recommend remedies. Curing met

0.02
lﬁo—()'AO—O'AO;éO, o_Ol | Iﬁ
: : : : 4 —o--
=02, | | : | p-a
L ol i P g -
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time step K

FIG.20. Odd-even decoupling problem: FDS method reaction to a pressure perturbation in thesggé®of
(Uo = 035)
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FIG. 21. Shock wave moving in a flow with a velocity component in théirection (density contours).

proceed normally from three observations, as previously discussed. First, the carbu
appears inside the zone of the numerical capture of a plane shock wave which is \
aligned with a grid line. Second, the carbuncle originates when the flux across the interf
normal to the shock itself is evaluated. Third, the source of the carbuncle has to be ascr
to FDS or “FDS mime” methods. By focusing attention on these facts, cures or remec
can be envisaged.

In [17] the following procedure is suggested. Each computational cell is inspected &
the difference between the local pressure and its level in any of the surrounding cell
estimated. If such a difference overcomes a threshold value, the cell is flagged. In compu
the flux on the interface between two flagged cells, the algorithm is switched from FDSRC
which is always used as the basic method, to HLL. The use of the latter method, whicl
a dissipative one, is confined to the restricted area where the shock is captured and wil
generate spurious dissipations in strongly rotational flows. This cure is very efficient,
proved by the results reported in [17]; however, the empirical assumption of the thresh
limit and the use of two totally different methods inside the code may not be so attracti

A similar procedure is proposed in [25], but with some differences. Here, the detecti
of critical cells is carried out by looking at the sign of the speed of acoustic characterist
in any couple of adjacent cells. When a sonic transition through a compression is dete:
across a given interface, the algorithm is then switched from an FDS (or similar) methoc
a dissipative one, to compute the flux over the neighboring perpendicular interfaces. In[:
the basic method can be either AUSMDYV (a blend of AUSMD and AUSMV) or FDSROE
The partner dissipative schemes used in the switching are respectively Rvi8l {i¢ision
[7]) and HLL. Even in this case, the cure is very efficient, as we have also experimentec
our numerical exercises by matching the basic method FDSPAN and the dissipative FVS
one. However, we have noted that the criterion used to detect the sonic line embedded i
captured shock, that is, the change in sign of characteristic speeds (Eq. 39 in [25]), is col
for shocks at rest, but it can fail for propagating shocks. However, it should be recalled t
the detection of moving shocks, typically performed in shock-fitting techniques, has alwe
been a critical point. Finally, as noticed for the previous cure [17], the introduction of
second method into the algorithm may be not attractive, especially in flows characteri
by high-temperature effects.

The cure proposed in [20] offers interesting suggestions, because it does not require
introduction of an alternative dissipative scheme but retains the same basic method, in
ticular FDSROE, with some variable dissipation injected into the algorithm in connection
specific waves. The curing process is as follows. At any interfilceV{ + 1/2) that sepa-
rates the cellsN|, M) and (N, M + 1), the maximum difference between the characteristi
speeds computed in the cell centers is evaluated and its magnitude is introduced into
variation of the algorithm known as tle@tropy fi8]. One should note that this operation is
performed for all three waves and is not limited to the acoustic ones (as in [8]) for the spec
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purpose of avoiding the formation of an expansion shock. This procedure already provi
a reduction of the instability, but not enough, since it is not applied to the proper locatio
It has therefore been suggested in [20] that the difference of the characteristic speec
evaluated not only at the interfacél (M + 1/2) but also at the neighboring interfaces
(N—-1/2,M) (N+1/2,M), (N —-1/2,M + 1), and N + 1/2, M + 1). The analysis is
thus developed on a H-structure of interfaces about the centralNond @ 1/2) and the
parameter to be introduced into thetropy fixat the interfacell, M + 1/2) is assumed to
be the maximum of the differences of the characteristic speeds across the five interfaces
detection method devised to introduce numerical dissipation at the inteNadé ¢ 1/2)
looks quite similar to the one reported in [25], but it does not require the identification o
sonic line and recognizes only sharp transitions of flow properties. Moreover, the detec
does not introduce the abrupt switch to a partner dissipative algorithm but injects a vari
level of dissipation into the basic algorithm that is related to the magnitude of the differer
of the characteristic speeds. The results reported in [20] show that this cure is also
efficient. However, we should note that, in the case of a parallel streamlines flow witl
severe transverse density gradiest (141 # on.m, @s usually found in a high-speed flow
boundary layer), the difference of the speed of sound across the inteNad# ¢ 1/2)
parallel to the streamlines induces an incorrect dissipation at the interface.

A further interesting cure is proposed in [1]. Here, the basic algorithm is HLLEM,
version of HLL, which recovers the contact surface by introducing antidiffusive terms relat
to the second characteristic. The HLLEM method is obviously affected by the carbun
phenomenon. The attractive feature of this cure is that only a local analysis is requi
and that there is no need to analyze the surrounding computational area, as in the pre
prescriptions. Attention is focused on the intermediate state of the primitive variables wit
solving the RP, at a given interface, with the dissipative HLL scheme. If these values do
over- or undershoot the initial values of the RP, then, those obtained with HLLEM shol
not over- or undershoot either. If they do, the situation is considered potentially danger
as far as the carbuncle phenomenon is concerned and the antidiffusive terms are lin
to avoid any over- or undershooting. The resulting method, called HLLEMR, is therefc
a proper blending of HLL and HLLEM. As in the last cure [20], dissipation is graduall
introduced into the basic scheme without using a partner auxiliary method. The resul
effects are very satisfactory, but the prescription is peculiar to the HLL family.

The analysis of the above remedies has been stimulating and led us to try to u:
prescription for curing the carbuncle in FDSPAN, which can also be used in the FDS w
the approximate solver of [15]. It is based on a detection routine, as in [20], but, in t
present case, does not include the central element of the H-structure of interfaces. Le
consider, for instance, surfadd (M + 1/2) in Fig. 22. The first step of our cure consists in
determining whether a “carbuncle-danger” exists for this interface or not, and if so, tow
extent. To do this, we start to determine the maximum difference between the character
speeds across the four interfaces connectedNtdM + 1/2), which are indicated with
crosses in Fig. 22. Such a maximum difference can be evaluated, considering, for instz
surface \ +1/2, M), as

en+12M = |Unyim — Onoml + [angam — angmls (1)

wherel is the velocity component normal to the surface ani$ the speed of sound.
Then, the largest differences between the four computed ones is assigned to the inte
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e the two phases of the cure:

1. detection of the “dangerous regions”

exti/2,m = |iny1,ar — An | + lanii v — anv oy

NIN.M+1/2 = max{fNﬂ/z,MH{ }1\’:0.1

2. injection of an appropriately tuned artificial dissipation

t t

a \‘,' b a '," b

NM NMIIN M NM NMIIN M

Fnmsr/2 = Fa— nnme1)2 (Wa — we) ‘ Fuomt1/2 = Fe — NN, a41/2 (wg — we)

FIG. 22. The two steps of the cure.

(N, M + 1/2) as a measure of the likelihood that a carbuncle may start there:

IN,M+1/2 = MaXENL1/2 M+K }K=0,1- 2

In the following,nn m+1/2 is used to estimate the appropriate dissipation to be injected at t
interface (N, M + 1/2). Itis important to notice that to avoid artificial viscosity from being
erroneously injected in the presence of transverse density gradients, SNrféte- 1/2
itself was excluded from the characteristic speed difference evaluation.

Oncen has been obtained, the RP is solvedit ¥ + 1/2). In the case of a moderate
velocity of the contact surface and with the two acoustic waves traveling in opposite dir
tions (see Fig. 22), two additional linear waves are imposed, one propagating leftward
the other rightward. These two waves present the same intensity, which is assumed t
equal to the product of with the difference between the conservative variables across tl
contact surface. Thus, the global fl#xacross surfacdl, M + 1/2 is evaluated as

FNM+12 = Fd — NN m1/2(wg — we) (3
or
Fnma12 = Fe — n,M11/2(wg — we) 4)

depending on whether the entropy wave is inclined leftward or rightward (Fig. 22).
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FIG. 23. Supersonic inviscid flow around a blunt bodyMt, = 20 (density contours). FDSPAN with cure
for the carbuncle.

Such a procedure can easily be interpreted as the translationa@ftiopy fixoriginally
conceived for FDSROE (for the acoustic waves only) to the contact surface in FDSPAN. -
cure is very efficient. The unacceptable blunt-body results of Fig. 6¢c become comple
free of instabilities (Fig. 23) and, outside the shock-capturing zone, they are identical to
reference values of SHOFIT (Fig. 6m). The propagating shock, with the disturbing shap
Fig. 7c, becomes perfectly plane, without even the smallest perturbation. We consider
cure very attractive, because it is applied only where it is needed, that is, at the respon:
interfaces inside the capturing zone of the shock. Moreover, it does not destroy the sharp
of density or shear velocity gradients, since the amount of the additional dissipation t
becomes negligible.

7. CONCLUSIONS

In our work we show, through both numerical experiments and the linearized analy
of the algorithms, that the so-called carbuncle phenomenon affects those flux-differe
splitting schemes that, when solving the Riemann Problem, explicitly take into account
presence of a contact surface.

The analysis of the linearized algorithms, originally proposed in [17] and extended her:
a larger number of perturbations and to several different upwind methods, provides a us
tool to estimate, in advance, the occurrence of the numerical instability in any method ©
at the expense of some algebra and without the necessity of implementing the method
code. In addition, such an analysis helps us to understand the approach of different up
schemes to the Riemann problem and to appreciate how close (or far) they are from
correct method of characteristics.

The cure that we propose as a remedy to the carbuncle effects appears to be effe
and efficient; it automatically introduces artificial dissipation only in those localized regio
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where some control of the carbuncle instability is required, butit does not actin the remain
flow-field, where the numerical viscosity is only related to the basic scheme used.

APPENDIX A

How to Obtain the Formulas Presented in Table |

Here we show how the value of the flux at the interface reported in Taltlg, | g
(G1, Gy, Gg3, G4) 1) can be obtained for some of the upwind methods considered,
particular for MOC FDSROE, FDSPAN, FVSVL, HLL, AUSM-VEL, AUSM-M, and
AUSM+. We refer to the problem described in Section 5 and to the relative definitio
given there. The flow is governed by the Euler equations for a perfect gas. Since we supj
the flow to be uniform along with any variation only occurring along, we hereafter
drop, in this Appendix, the indek, which denotes a computational location, so that the
identificationN, M will be reduced tdM. We assume initial values at ce{ld) and(M + 1):

om=1+p, pmy1=1-0p,
UM =Uo+ 0, uUms1 =Up—0,
uvm = 0, umyr =0,

pmy =1+p, pwyr=1-p.

(5)

Since perturbationg, U, and p are small, one obtains
_ p_s _ _bs
aM—«/7<1+2 2), alvl+1—«/?<1 2+2>7 (6)
wherey is the ratio of the specific heatg & 1.4).
The conservative variabléd/ = (p, pu, pv, €)T and the components of the flu& =
(pv, puv, p+ pv?, v(p + €)' associated with thg -direction, at cell§M) and(M + 1),
are

1+p
U(1+5+2)
Wn = ;
0
1+ 2 ~
AR+ 2+ p+28)
A (7)
1-p
Uo(l—,a—u%)
Wwmyr = 0
2 R -
iR (-5 —2g)
and
0 0
0 0
Gm = 1]} Gmi = 1 (8)
0 0

On the basis of these initial data, we estimate ﬂw+% at the interfacéM + %).
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MOC, FDSROE, and FDSPAN

The solution of the RP according to the MOC is based upon the conservation of the sig

Ris=pF./Yv, R = p%, and R, = u along the corresponding characteristic rays. The

flow properties at interfaceM + %) are evaluated from these conditions:

Pvyi + \/?UM+% = pm + /Y Um, (9a)
Pmil — V¥ Pmil = PMs1 — /Y UM, (9b)
Pm/ P it p>0,

i/pl = 9c
P/ P {pM+l/:0|J\//|+l otherwise 9
u if p> 0,
T . (9d)
2 Ums1 Otherwise
From Egs. (5), we obtain
1+5-2 ifp>o,
Pm+l = ~ 1|Ci) . (10a)
2 1-p+ v otherwise
Uup+0a if p>0,
T L (10b)
2 Uo — 0 otherwise
p
Vol = ——, (10c)
M+ \/7
Pmiy =1 (10d)
Finally, the resulting qu>GM+% is
p
Nz
Uog P
Gyt = v ) (11)
1
21 B
a+9%

This estimate corresponds to the exact solution of the RP because the perturbatiofg (©
are smalland nointense shock waves are expected. The solution is also the same for FDS
(since the approximate solver proposed in [19] becomes exact if small initial discontinuit
define the RP) and for FDSPAN [16] and for the method proposed in [15] (because the ¢
approximation in these two solvers is introduced in the case of intense shock waves).

FVSVL
In the FVSVL method [24], the following local splitting of the flux is defined:

1
Gt =+ (v+a)? N (12)
=T (y—DvL2a |-
(y=Dv+2a)?

UZ
2(y2-1) + 2
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The interface qu>GM+% is given by
Gmii =Gm +Gua (13)
which, on the basis of the assumed initial values, becomes
L P+ h)
04(ﬁ+,5+2u%) . (14)

1

Gy =

The interface flux for FVSSW [21] is evaluated in a very similar manner.

HLL
In the HLL method [6], the flux at the interface is estimated as

)»RGM—)»LGM+1+ ARAL

G = W -W 15
M+l . Y ( M+1 M) (15)

where, as reported in [6]A1 andAg are the lower and upper bounds, respectively, for the
smallest and largest signal velocity, calculated according to some algorithm.” Using E
(7) and (8), we obtain

Nz,

Guy=| OO 16)

VL [3 % UO\/— Uo

AUSM-VEL

Looking at the method AUSM-VEL and the relative definitions given in [11], we obtail
for the convective terms

am - 8w (17)

=+
|
<
ES
£
I

+ _ Pwm - DM+1. (18)

Therefore, following [11], we have

JT

(19a)

>
=~

— o s —
UMti = UM+ Umyp1 =

pM+% = Pﬁ + plT/H-l =1 (19b)
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and
1+p
Uo(l + ,5 + u%)
Py = 0 ;
~ 2 ~ ~
LA+ D+ F(1+p+28)
(20)
1-p
® Uo(l — /6 — u%)
M+1 =
0
~ 2 ~ ~
Fa= P+ F (1= - 28)
The interface flux is defined as
0
G _ Um+1 Pwm if umst > 0, N 0 . 1)
M+2 vms1®Pur1 Otherwise Pm+3
0
It therefore follows that
(D p)
ﬁ ~ ~
Uo*Z-(P— )
GM+% = 4 . (22)

AUSM-M

The AUSM-M method is described in [12]. On the basis of the definitions given ther
we obtain

Mi=g M= (233)
R T (230)
Therefore,
Myiz = My + My, =0, (24a)
Pmii = Pu+ Pyya= 1 (24b)
With the previous definitions by and® 1, the interface flux is defined as
M P if 0) :
1avPm Moy >0, 0
Smet = {M::;aM+lCDM+1 Oth::v;ise * Pm+ |- (25)

0
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SinceMy,, 1 = 0, we have

Gus1 = (26)

oOpFr OO

as reported in Table I.

AUSM+

The most recent AUSM method is described in [13]. With the definitions given there
and the usual initial values, we have

1 N 1
M;=Z+ﬂ, My Z_Z_ﬁ’ (27a)
1 1
+ _ = -_ -
Pa - 2’ Put 2’ (27b)
It therefore follows that
Mys: = Mg + Mg =0, (28a)
Pums: =Py Pm + Py Pupr = 1. (28b)

Furthermore, a value of the interface speed of scamg% is somehow determined in [13]
and the interface flux is defined as

0
CIVIEE . + | byt (28)
mM+%aM+%CI>M+1 otherwise 3
0
Sincemy,, 1 = 0, we have, as in the previous method,
0
0
GM+§ = 1l (29)
0

The values of the component&1)y 1, (G2l 1, (Galmy i and (Galmyt of the flux
GM+% estimated in Egs. (11), (14), (16), (22), (26), and (29) are reported in Table I.

APPENDIX B

How to Obtain the Formulas Presented in Table II

We use the evaluations of the interface flux reported in Table | to obtain the recurs
formulas shown in Table Il. As in the previous Appendix A, we here drop the imdéx
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denote a computational location. We assume the initial data at thé&st@gen by

o =145k, (30a)

K = ug+ 0K, (30b)
vk =0, (30c)
pk =1+ pX, (30d)

where thet sign refers to the cel{lM) and the— sign to the neighboring cell$v — 1) and

(M + 1). Starting from stefK, we integrate, in time, the governing laws of conservatior
at the cell(M), on the basis of the plain first-order scheme. The result atlstepl is
represented by

K+l _ gk YV K K
Wyt =Wwg |v|+a(GM+% Gy_1): (31)

wherev is the Courant number. It is convenient to introduce the perturbations of the cc
servative variable at cefM) and of the flux at interfacéM + %),

P
R uo(p + &)
Wy = 0 v : (31a)
y?l + U%Z('b + zuﬂo)
0
A 0
GM+% = GM+§ 11l (31b)
0

whereG,VH% is given in Table I. Since the flow properties at célé — 1) and(M + 1) are
the same, the difference of the flux at interfaces+ 3) and(M — ) is given by

Guy: —Gy_1 =Gy,

1= . (32)

Nl

Moreover, the characteristic slope| + a) tends to,/y . Therefore, the integration scheme
(Eq. 31) gives

~ ~ 2V A
witt =wl - —=G¥

N (33)

We define(G))Y, , , as being thé component of vectoGY, ,. Then, from Eq. (33), the
2 2
integration of the first law of conservation (continuity) gives

2v
VY

~K+1

= Py (ChivIes (34)
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The integration of the second law of conservatigfmfomentum) and the above Eq. (34)
yields

2v A -
~AK+1 ~
UM+ =u|l\(/| — ﬁ(—UO(Gl)’\K/H_% +(Gz)s+%) (35)
The integration of the third conservation layrifnomentum) leads to
l’)K-‘rl — i}K _ g(é )K (36)
M M N IM+i-

The integration of the fourth law of conservation (energy) and Eqs. (34)—(36) give

- . 2v uz . . .
P =P — o0 - 1><3°<Gl>§+% —uoGa)yy, s + <G4)s+%>. (37)

By taking the value of the componer(tél)*,\(/wl, (éz)s+l, (ég)er;, and((§4),'f/Ile of
~ 2 2 2 2
G,*\(H; that can be obtained from Table | for each method, we obtain the recursive formu

of Taiale 1.
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